Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Aug 1;74(2):605–628. doi: 10.1083/jcb.74.2.605

Gap junction structures. I. Correlated electron microscopy and x-ray diffraction

PMCID: PMC2110076  PMID: 885916

Abstract

X-ray crystallographic methods and electron microscope image analysis have been used to correlate the structure and the chemical composition of gap junction plaques isolated intact from mouse liver. The requirement that the interpretations of X-ray, electron microscope, and chemical measurements be consistent reduces the uncertainties inherent in the separate observations and leads to a unified picture of the gap junction structures. Gap junctions are built up of units called connexons that are hexagonally arrayed in the pair of connected cell membranes. X-ray diffraction and electron microscope measurements show that the lattice constant of this array varies from about 80 to 90 A. Analysis of electron micrographs of negatively stained gap junctions shows that there is significant short range disorder in the junction lattice. even though the long range order of the array is remarkably regular. Analysis of the disorder provides information about the nature of the intermolecular forces that hold the array together.

Full Text

The Full Text of this article is available as a PDF (7.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay M., Barclay R. K., Essner E. S., Skipski V. P., Terebus-Kekish O. Plasma membranes of rat liver: isolation of lipoprotein macromolecules. Science. 1967 May 5;156(3775):665–667. doi: 10.1126/science.156.3775.665. [DOI] [PubMed] [Google Scholar]
  2. Benedetti E. L., Emmelot P. Electron microscopic observations on negatively stained plasma membranes isolated from rat liver. J Cell Biol. 1965 Jul;26(1):299–305. doi: 10.1083/jcb.26.1.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benedetti E. L., Emmelot P. Hexagonal array of subunits in tight junctions separated from isolated rat liver plasma membranes. J Cell Biol. 1968 Jul;38(1):15–24. doi: 10.1083/jcb.38.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bennett M. V. Function of electrotonic junctions in embryonic and adult tissues. Fed Proc. 1973 Jan;32(1):65–75. [PubMed] [Google Scholar]
  5. Dunia I., Sen Ghosh C., Benedetti E. L., Zweers A., Bloemendal H. Isolation and protein pattern of eye lens fiber junctions. FEBS Lett. 1974 Sep 1;45(1):139–144. doi: 10.1016/0014-5793(74)80831-8. [DOI] [PubMed] [Google Scholar]
  6. Goodenough D. A. Bulk isolation of mouse hepatocyte gap junctions. Characterization of the principal protein, connexin. J Cell Biol. 1974 May;61(2):557–563. doi: 10.1083/jcb.61.2.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goodenough D. A., Gilula N. B. The splitting of hepatocyte gap junctions and zonulae occludentes with hypertonic disaccharides. J Cell Biol. 1974 Jun;61(3):575–590. doi: 10.1083/jcb.61.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goodenough D. A. In vitro formation of gap junction vesicles. J Cell Biol. 1976 Feb;68(2):220–231. doi: 10.1083/jcb.68.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jack A., Harrison S. C., Crowther R. A. Structure of tomato bushy stunt virus. II. Comparison of results obtained by electron microscopy and x-ray diffraction. J Mol Biol. 1975 Sep 15;97(2):163–172. doi: 10.1016/s0022-2836(75)80032-5. [DOI] [PubMed] [Google Scholar]
  11. Makowski L., Caspar D. L., Phillips W. C., Goodenough D. A. Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol. 1977 Aug;74(2):629–645. doi: 10.1083/jcb.74.2.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mitchell C. D., Hanahan D. J. Solubilization of certain proteins from the human erythrocyte stroma. Biochemistry. 1966 Jan;5(1):51–57. doi: 10.1021/bi00865a008. [DOI] [PubMed] [Google Scholar]
  13. Peracchia C., Dulhunty A. F. Low resistance junctions in crayfish. Structural changes with functional uncoupling. J Cell Biol. 1976 Aug;70(2 Pt 1):419–439. doi: 10.1083/jcb.70.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Peracchia C. Gap junctions. Structural changes after uncoupling procedures. J Cell Biol. 1977 Mar;72(3):628–641. doi: 10.1083/jcb.72.3.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. ROBERTSON J. D. THE OCCURRENCE OF A SUBUNIT PATTERN IN THE UNIT MEMBRANES OF CLUB ENDINGS IN MAUTHNER CELL SYNAPSES IN GOLDFISH BRAINS. J Cell Biol. 1963 Oct;19:201–221. doi: 10.1083/jcb.19.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Revel J. P., Karnovsky M. J. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol. 1967 Jun;33(3):C7–C12. doi: 10.1083/jcb.33.3.c7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES