Abstract
Anglerfish proinsulin and insulin were selectively labeled with [(14)C]isoleucine, while proglucagon, conversion intermediate(s), and glucagon were selectively labeled with[(3)H]tryptophan. After various periods of continuous or pulse-chase incubation, islet tissue was subjected to subcellular fractionation. Fraction extracts were analyzed by gel filtration for their content of precursor, conversion intermediate(s), and product peptides. Of the seven subcellular fractions prepared after each incubation, only the microsome and secretory granule fractions yielded significant amounts of labeled insulin-related and glucagon-related peptides. After short-pulse incubations, levels of both [(14)C]proinsulin and [(3)H]proglucagon (mol wt approximately 12,000) were highest in the microsome fraction. This fraction is therefore identified as the site of synthesis. With increasing duration of continuous incubation or during chase incubation in the absence of isotopes, proinsulin, proglucagon, and conversion intermediate(s) are transported to secretory granules. Conversion of proinsulin to insulin and proglucagon to a approximately 4,900 mol wt conversion intermediate and 3,500 mol wt glucagon occurs in the secretory granules. Converting activity also was observed in the microsome fraction. The recovery of most of the incorporated radioactivity in microsome and secretory granule fractions indicates that the newly synthesized islet peptides are relegated to a membrane-bound state soon after synthesis at the RER is completed. This finding supports the concept of intracisternal sequestration and intragranular maintenance of peptides synthesized for export from the cell of origin.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arimura A., Sato H., Dupont A., Nishi N., Schally A. V. Somatostatin: abundance of immunoreactive hormone in rat stomach and pancreas. Science. 1975 Sep 19;189(4207):1007–1009. doi: 10.1126/science.56779. [DOI] [PubMed] [Google Scholar]
- Bauer G. E., Lindall A. W., Jr, Dixit P. K., Lester G., Lazarow A. Studies on insulin biosynthesis. Subcellular distribution of leucine-H3 radioactivity during incubation of goosefish islet tissue. J Cell Biol. 1966 Mar;28(3):413–421. doi: 10.1083/jcb.28.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creutzfeldt C., Track N. S., Creutzfeldt W. In vitro studies of the rate of proinsulin and insulin turnover in seven human insulinomas. Eur J Clin Invest. 1973 Sep;3(5):371–384. doi: 10.1111/j.1365-2362.1973.tb02203.x. [DOI] [PubMed] [Google Scholar]
- DALLNER G., ORRENIUS S., BERGSTRAND A. Isolation and properties of rough and smooth vesicles from rat liver. J Cell Biol. 1963 Feb;16:426–430. doi: 10.1083/jcb.16.2.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dallner G., Nilsson R. Mechanism of the cation effect in subfractionation of microsomes. J Cell Biol. 1966 Oct;31(1):181–193. doi: 10.1083/jcb.31.1.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell S. L., Fink C. J., Lacy P. E. Isolation and properties of secretory granules from rat islets of Langerhans. I. Isolation of a secretory granule fraction. J Cell Biol. 1969 Apr;41(1):154–161. doi: 10.1083/jcb.41.1.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell S. L., Kostianovsky M., Lacy P. E. Beta granule formation in isolated islets of langerhans: a study by electron microscopic radioautography. J Cell Biol. 1969 Sep;42(3):695–705. doi: 10.1083/jcb.42.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Intracellular transport of secretory proteins in the pancreatic exocrine cell. II. Transport to condensing vacuoles and zymogen granules. J Cell Biol. 1967 Aug;34(2):597–615. doi: 10.1083/jcb.34.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson J. D., Palade G. E. Synthesis, intracellular transport, and discharge of secretory proteins in stimulated pancreatic exocrine cells. J Cell Biol. 1971 Jul;50(1):135–158. doi: 10.1083/jcb.50.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson D. E., Torrence J. L., Elde R. P., Bauer G. E., Noe B. D., Fletcher D. J. Immunohistochemical localization of somatostatin, insulin and glucagon in the principal islets of the anglerfish (Lophius americanus) and the channel catfish (Ictalurus punctata) (1) (2). Am J Anat. 1976 Sep;147(1):119–124. doi: 10.1002/aja.1001470112. [DOI] [PubMed] [Google Scholar]
- Kemmler W., Peterson J. D., Rubenstein A. H., Steiner D. F. On the biosynthesis, intracellular transport and mechanism of conversion of proinsulin to insulin and C-peptide. Diabetes. 1972;21(2 Suppl):572–581. doi: 10.2337/diab.21.2.s572. [DOI] [PubMed] [Google Scholar]
- Kemmler W., Steiner D. F., Borg J. Studies on the conversion of proinsulin to insulin. 3. Studies in vitro with a crude secretion granule fraction isolated from rat islets of Langerhans. J Biol Chem. 1973 Jul 10;248(13):4544–4551. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lazarus N. R., Tanese T., Gutman R., Recant L. Synthesis and release of proinsulin and insulin by human insulinoma tissue. J Clin Endocrinol Metab. 1970 Mar;30(3):273–281. doi: 10.1210/jcem-30-3-273. [DOI] [PubMed] [Google Scholar]
- Leibow C., Rothman S. S. Enteropancreatic circulation of digestive enzymes. Science. 1975 Aug 8;189(4201):472–474. doi: 10.1126/science.1154022. [DOI] [PubMed] [Google Scholar]
- Liebow C., Rothman S. S. Transport of bovine chymotrypsinogen into rabbit pancreatic cells. Am J Physiol. 1974 May;226(5):1077–1081. doi: 10.1152/ajplegacy.1974.226.5.1077. [DOI] [PubMed] [Google Scholar]
- Melani F. Pro-hormones in tissues and in circulation. Horm Metab Res. 1974 Jan;6(1):1–8. doi: 10.1055/s-0028-1093893. [DOI] [PubMed] [Google Scholar]
- Moya F., Nieto A., R-Candela J. L. Calcitonin biosynthesis: evidence for a precursor. Eur J Biochem. 1975 Jul 1;55(2):407–413. doi: 10.1111/j.1432-1033.1975.tb02176.x. [DOI] [PubMed] [Google Scholar]
- Neumann P. A., Koldenhof M., Humbel R. E. Amino acid sequence of insulin from the angler fish (Lophius piscatorius). Hoppe Seylers Z Physiol Chem. 1969 Oct;350(10):1286–1288. [PubMed] [Google Scholar]
- Noe B. D., Baste C. A., Bauer G. E. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level. I. Fractionation procedure and characterization of the subcellular fractions. J Cell Biol. 1977 Aug;74(2):578–588. doi: 10.1083/jcb.74.2.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noe B. D., Bauer G. E. Evidence for glucagon biosynthesis involving a protein intermediate in islets of the anglerfish (Lophius americanus). Endocrinology. 1971 Sep;89(3):642–651. doi: 10.1210/endo-89-3-642. [DOI] [PubMed] [Google Scholar]
- Noe B. D., Bauer G. E. Evidence of sequential metabolic cleavage of proglucagon to glucagon in glucagon biosynthesis. Endocrinology. 1975 Oct;97(4):868–877. doi: 10.1210/endo-97-4-868. [DOI] [PubMed] [Google Scholar]
- Noe B. D., Bauer G. E. Further characterization of a glucagon precursor from anglerfish islet tissue. Proc Soc Exp Biol Med. 1973 Jan;142(1):210–213. doi: 10.3181/00379727-142-36990. [DOI] [PubMed] [Google Scholar]
- Noe B. D., Bauer G. E., Steffes M. W., Sutherland D. E., Najarian J. S. Glucagon biosynthesis in human pancreatic islets: preliminary evidence for a biosynthetic intermediate. Horm Metab Res. 1975 Jul;7(4):314–322. doi: 10.1055/s-0028-1093721. [DOI] [PubMed] [Google Scholar]
- O'connor K. J., Gay A., Lazarus N. R. The biosynthesis of glucagon in perfused rat pancreas. Biochem J. 1973 Jun;134(2):473–480. doi: 10.1042/bj1340473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orci L., Baetens D., Dubois M. P., Rufener C. Evidence for the D-cell of the pancreas secreting somatostatin. Horm Metab Res. 1975 Sep;7(5):400–402. doi: 10.1055/s-0028-1093736. [DOI] [PubMed] [Google Scholar]
- Orci L., Lambert A. E., Kanazawa Y., Amherdt M., Rouiller C., Renold A. E. Morphological and biochemical studies of B cells of fetal rat endocrine pancreas in organ culture. Evidence for (pro) insulin biosynthesis. J Cell Biol. 1971 Sep;50(3):565–582. doi: 10.1083/jcb.50.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman S. S., Isenman L. D. Secretion of digestive enzyme derived from two parallel intracellular pools. Am J Physiol. 1974 May;226(5):1082–1087. doi: 10.1152/ajplegacy.1974.226.5.1082. [DOI] [PubMed] [Google Scholar]
- Scheele G. A., Palade G. E. Studies on the guinea pig pancreas. Parallel discharge of exocrine enzyme activities. J Biol Chem. 1975 Apr 10;250(7):2660–2670. [PubMed] [Google Scholar]
- Steiner D. F., Kemmler W., Tager H. S., Peterson J. D. Proteolytic processing in the biosynthesis of insulin and other proteins. Fed Proc. 1974 Oct;33(10):2105–2115. [PubMed] [Google Scholar]
- Sun A. M., Lin B. J., Haist R. E. Studies on the conversion of proinsulin to insulin in the isolated islets of Langerhans in the rat. Can J Physiol Pharmacol. 1973 Mar;51(3):175–182. doi: 10.1139/y73-025. [DOI] [PubMed] [Google Scholar]
- Tager H. S., Steiner D. F. Isolation of a glucagon-containing peptide: primary structure of a possible fragment of proglucagon. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2321–2325. doi: 10.1073/pnas.70.8.2321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tartakoff A. M., Jamieson J. D., Scheele G. A., Palade G. E. Studies on the pancreas of the guinea pig. Parallel processing and discharge of exocrine proteins. J Biol Chem. 1975 Apr 10;250(7):2671–2677. [PubMed] [Google Scholar]
- Tartakoff A. M., Jamieson J. D. Subcellular fractionation of the pancreas. Methods Enzymol. 1974;31:41–59. doi: 10.1016/0076-6879(74)31006-3. [DOI] [PubMed] [Google Scholar]
- Trakatellis A. C., Tada K., Yamaji K., Gardiki-Kouidou P. Isolation and partial characterization of anglefish proglucagon. Biochemistry. 1975 Apr 8;14(7):1508–1512. doi: 10.1021/bi00678a025. [DOI] [PubMed] [Google Scholar]
- Tung A. K. Biosynthesis of avian glucagon: evidence for a possible high molecular weight biosynthetic intermediate. Horm Metab Res. 1973 Nov;5(6):416–424. doi: 10.1055/s-0028-1093915. [DOI] [PubMed] [Google Scholar]
- Yamaji K., Tada K., Trakatellis A. C. On the biosynthesis of insulin in anglerfish islets. J Biol Chem. 1972 Jun 25;247(12):4080–4088. [PubMed] [Google Scholar]
