Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Sep 1;74(3):1032–1037. doi: 10.1083/jcb.74.3.1032

Polarized bundles of actin filaments within microvilli of fertilized sea urchin eggs

PMCID: PMC2110103  PMID: 332702

Abstract

We report on the internal ultrastructure of long, finger-like microvilli which cover the surface of the fertilized sea urchin egg. Eggs were attached to polylysine-coated surfaces; their upper portions were sheared away with a stream of buffer which left behind only their plasma membranes and adjacent cytoplasmic structures. Scanning electron microscopy (EM) of such fragments revealed intact thin protoplasmic projections radiating away from the body of the cortex. By transmission EM of cortices similarly prepared on grids, small bundles of microfilaments appear as cores within the thin cytoplasmic projections. These microfilaments are shown to be composed of actin by their ability to interact with muscle heavy meromyosin (HMM). HMM-decorated microfilaments possess repeating arrowheads which uniformly point toward the cell interior. Actin bundles in the microvilli of sea urchin eggs may mediate microvillus support and elongation.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amsterdam A., Lindner H. R., Groschel-Stewart U. Localization of actin and myosin in the rat oocyte and follicular wall by immunofluorescence. Anat Rec. 1977 Mar;187(3):311–328. doi: 10.1002/ar.1091870304. [DOI] [PubMed] [Google Scholar]
  2. Clarke M., Schatten G., Mazia D., Spudich J. A. Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 May;72(5):1758–1762. doi: 10.1073/pnas.72.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DAN K. Cyto-embryology of echinoderms and amphibia. Int Rev Cytol. 1960;9:321–367. doi: 10.1016/s0074-7696(08)62751-5. [DOI] [PubMed] [Google Scholar]
  4. Eddy E. M., Shapiro B. M. Changes in the topography of the sea urchin egg after fertilization. J Cell Biol. 1976 Oct;71(1):35–48. doi: 10.1083/jcb.71.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Franke W. W., Rathke P. C., Seib E., Trendelenburg M. F., Osborn M., Weber K. Distribution and mode of arrangement of microfilamentous structures and actin in the cortex of the amphibian oocyte. Cytobiologie. 1976 Dec;14(1):111–130. [PubMed] [Google Scholar]
  6. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  7. Mazia D., Schatten G., Steinhardt R. Turning on of activities in unfertilized sea urchin eggs: correlation with changes of the surface. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4469–4473. doi: 10.1073/pnas.72.11.4469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Szollosi D. Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J Cell Biol. 1970 Jan;44(1):192–209. doi: 10.1083/jcb.44.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Tegner M. J., Epel D. Scanning electron microscope studies of sea urchin fertilization. I. Eggs with vitelline layers. J Exp Zool. 1976 Jul;197(1):31–57. doi: 10.1002/jez.1401970105. [DOI] [PubMed] [Google Scholar]
  11. Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES