Abstract
An immunocytochemical approach was used to localize myosin with respect to individual fibers in rat skeletal muscle. Transverse cryostat sections of rat diaphragm, a fast-twitch muscle, were exposed to fluorescein-labeled immunoglobulin against purified chicken pectoralis myosin. Fluorescence microscopy revealed a differential response among fiber types, identified on the basis of mitochondrial content. All white and intermediate fiber but only about half of the red fiber reacted with his antimyosin. In addition, an alkali-stable ATPase had the same pattern of distribution among fibers, which is consistent with the existence of two categories of red fibers. The positive response of certain red fibers indicates either that their myosin has antigenic determinants in common with "white" myosin, or that the immunogen contained a "red" myosin. Myosin, extracted from a small region of the pectorlis which consists entirely of white fibers, was used to prepare an immunoadsorbent column to isolate antibodies specific for white myosin. This purified anti-white myosin reacted with the same fibers of the rat diaphragm that had reacted with the white, intermediate, and some red fibers are sufficiently homologous to share antigenic determinants. In a slow-twitch muscle, the soleus, only a minority of the fiber reacted with antipectoralis myosin. The majority failed to respond; hence, they are not equivalent to intermediate fibers of the diaphragm; despite their intermediate mitochondrial content. Immunocytochemical analysis of two different musles of the rat has demonstrated that more than one isoenzyme of myosin can exist in a single muscle, and that individual fiber types can be recognized by immunological differences in their myosin. We conclude that, in the rat diaphragm, there are at least two immunochemically distinct types of myosin and four types of muscle fibers: white, intermediate, and two red. We suggest that these fibers correspond to the four types of motor units described by Burke et al. (Burke, R. E., D. N. Levine, P. Tsairis, and F. E. Zajac, III 1973. J. Physiol. (Lond) 234:723-748.)in the cat gastrocnemius.`
Full Text
The Full Text of this article is available as a PDF (6.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amphlett G. W., Perry S. V., Syska H., Brown M. D., Vrbova G. Cross innervation and the regulatory protein system of rabbit soleus muscle. Nature. 1975 Oct 16;257(5527):602–604. doi: 10.1038/257602a0. [DOI] [PubMed] [Google Scholar]
- Arndt I., Pepe F. A. Antigenic specificity of red and white muscle myosin. J Histochem Cytochem. 1975 Mar;23(3):159–168. doi: 10.1177/23.3.47867. [DOI] [PubMed] [Google Scholar]
- BULLER A. J., ECCLES J. C., ECCLES R. M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J Physiol. 1960 Feb;150:417–439. doi: 10.1113/jphysiol.1960.sp006395. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnard R. J., Edgerton V. R., Furukawa T., Peter J. B. Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers. Am J Physiol. 1971 Feb;220(2):410–414. doi: 10.1152/ajplegacy.1971.220.2.410. [DOI] [PubMed] [Google Scholar]
- Burke R. E., Levine D. N., Salcman M., Tsairis P. Motor units in cat soleus muscle: physiological, histochemical and morphological characteristics. J Physiol. 1974 May;238(3):503–514. doi: 10.1113/jphysiol.1974.sp010540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke R. E., Levine D. N., Tsairis P., Zajac F. E., 3rd Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol. 1973 Nov;234(3):723–748. doi: 10.1113/jphysiol.1973.sp010369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burke R. E., Rymer W. Z. Relative strength of synaptic input from short-latency pathways to motor units of defined type in cat medial gastrocnemius. J Neurophysiol. 1976 May;39(3):447–458. doi: 10.1152/jn.1976.39.3.447. [DOI] [PubMed] [Google Scholar]
- Burke R. E., Tsairis P. Trophic functions of the neuron. II. Denervation and regulation of muscle. The correlation of physiological properties with histochemical characteristics in single muscle units. Ann N Y Acad Sci. 1974 Mar 22;228(0):145–159. doi: 10.1111/j.1749-6632.1974.tb20507.x. [DOI] [PubMed] [Google Scholar]
- Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bárány M., Close R. I. The transformation of myosin in cross-innervated rat muscles. J Physiol. 1971 Mar;213(2):455–474. doi: 10.1113/jphysiol.1971.sp009393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COONS A. H., LEDUC E. H., KAPLAN M. H. Localization of antigen in tissue cells. VI. The fate of injected foreign proteins in the mouse. J Exp Med. 1951 Feb;93(2):173–188. doi: 10.1084/jem.93.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummins P., Perry S. V. Chemical and immunochemical characteristics of tropomyosins from striated and smooth muscle. Biochem J. 1974 Jul;141(1):43–49. doi: 10.1042/bj1410043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cummins P., Perry S. V. The subunits and biological activity of polymorphic forms of tropomyosin. Biochem J. 1973 Aug;133(4):765–777. doi: 10.1042/bj1330765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EISEN H. N., SISKIND G. W. VARIATIONS IN AFFINITIES OF ANTIBODIES DURING THE IMMUNE RESPONSE. Biochemistry. 1964 Jul;3:996–1008. doi: 10.1021/bi00895a027. [DOI] [PubMed] [Google Scholar]
- Edgerton V. R., Simpson D. R. The intermediate muscle fiber of rats and guinea pigs. J Histochem Cytochem. 1969 Dec;17(12):828–838. doi: 10.1177/17.12.828. [DOI] [PubMed] [Google Scholar]
- Edström L., Kugelberg E. Histochemical composition, distribution of fibres and fatiguability of single motor units. Anterior tibial muscle of the rat. J Neurol Neurosurg Psychiatry. 1968 Oct;31(5):424–433. doi: 10.1136/jnnp.31.5.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elgart E. S., Gusovsky T., Rosenberg M. D. Preparation and characterization of an enzymatically active immobilized derivative of myosin. Biochim Biophys Acta. 1975 Nov 20;410(1):178–192. doi: 10.1016/0005-2744(75)90219-3. [DOI] [PubMed] [Google Scholar]
- Frank G., Weeds A. G. The amino-acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur J Biochem. 1974 May 15;44(2):317–334. doi: 10.1111/j.1432-1033.1974.tb03489.x. [DOI] [PubMed] [Google Scholar]
- Gauthier G. F. On the relationship of ultrastructural and cytochemical features of color in mammalian skeletal muscle. Z Zellforsch Mikrosk Anat. 1969;95(3):462–482. doi: 10.1007/BF00995217. [DOI] [PubMed] [Google Scholar]
- Gauthier G. F., Padykula H. A. Cytological studies of fiber types in skeletal muscle. A comparative study of the mammalian diaphragm. J Cell Biol. 1966 Feb;28(2):333–354. doi: 10.1083/jcb.28.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gauthier G. F. Some ultrastructural and cytochemical features of fiber populations in the soleus muscle. Anat Rec. 1974 Dec;180(4):551–563. doi: 10.1002/ar.1091800402. [DOI] [PubMed] [Google Scholar]
- Gröschel-Stewart U., Doniach D. Immunological evidence for human myosin isoenzymes. Immunology. 1969 Dec;17(6):991–994. [PMC free article] [PubMed] [Google Scholar]
- Gröschel-Stewart U., Meschede K., Lehr I. Histochemical and immunochemical studies on mammalian striated muscle fibres. Histochemie. 1973;33(1):79–85. doi: 10.1007/BF00304229. [DOI] [PubMed] [Google Scholar]
- Guth L., Samaha F. J., Albers R. W. The neural regulation of some phenotypic differences between the fiber types of mammalian skeletal muscle. Exp Neurol. 1970 Jan;26(1):126–135. doi: 10.1016/0014-4886(70)90094-4. [DOI] [PubMed] [Google Scholar]
- Guth L., Samaha F. J. Procedure for the histochemical demonstration of actomyosin ATPase. Exp Neurol. 1970 Aug;28(2):365–367. [PubMed] [Google Scholar]
- Guth L., Samaha F. J. Qualitative differences between actomyosin ATPase of slow and fast mammalian muscle. Exp Neurol. 1969 Sep;25(1):138–152. doi: 10.1016/0014-4886(69)90077-6. [DOI] [PubMed] [Google Scholar]
- HENNEMAN E., OLSON C. B. RELATIONS BETWEEN STRUCTURE AND FUNCTION IN THE DESIGN OF SKELETAL MUSCLES. J Neurophysiol. 1965 May;28:581–598. doi: 10.1152/jn.1965.28.3.581. [DOI] [PubMed] [Google Scholar]
- Hall-Craggs E. C. The contraction times and enzyme activity of two rabbit laryngeal muscles. J Anat. 1968 Jan;102(Pt 2):241–255. [PMC free article] [PubMed] [Google Scholar]
- Head J. F., Perry S. V. The interaction of the calcium-binding protein (troponin C) with bivalent cations and the inhibitory protein (troponin I). Biochem J. 1974 Feb;137(2):145–154. doi: 10.1042/bj1370145. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoh J. F. Neural regulation of mammalian fast and slow muscle myosins: an electrophoretic analysis. Biochemistry. 1975 Feb 25;14(4):742–747. doi: 10.1021/bi00675a015. [DOI] [PubMed] [Google Scholar]
- Hoh J. Y., McGrath P. A., White R. I. Electrophoretic analysis of multiple forms of myosin in fast-twitch and slow-twitch muscles of the chick. Biochem J. 1976 Jul 1;157(1):87–95. doi: 10.1042/bj1570087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jean D. H., Albers R. W., Guth L., Aron H. J. Differences between the heavy chains of fast and slow muscle myosin. Exp Neurol. 1975 Dec;49(3):750–757. doi: 10.1016/0014-4886(75)90056-4. [DOI] [PubMed] [Google Scholar]
- Kugelberg E., Edström L. Differential histochemical effects of muscle contractions on phosphorylase and glycogen in various types of fibres: relation to fatigue. J Neurol Neurosurg Psychiatry. 1968 Oct;31(5):415–423. doi: 10.1136/jnnp.31.5.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kugelberg E. Histochemical composition, contraction speed and fatiguability of rat soleus motor units. J Neurol Sci. 1973 Oct;20(2):177–198. doi: 10.1016/0022-510x(73)90029-4. [DOI] [PubMed] [Google Scholar]
- Lowey S., Risby D. Light chains from fast and slow muscle myosins. Nature. 1971 Nov 12;234(5324):81–85. doi: 10.1038/234081a0. [DOI] [PubMed] [Google Scholar]
- Lowey S., Steiner L. A. An immunochemical approach to the structure of myosin and the thick filament. J Mol Biol. 1972 Mar 14;65(1):111–126. doi: 10.1016/0022-2836(72)90495-0. [DOI] [PubMed] [Google Scholar]
- MCPHEDRAN A. M., WUERKER R. B., HENNEMAN E. PROPERTIES OF MOTOR UNITS IN A HETEROGENEOUS PALE MUSCLE (M. GASTROCNEMIUS) OF THE CAT. J Neurophysiol. 1965 Jan;28:85–99. doi: 10.1152/jn.1965.28.1.85. [DOI] [PubMed] [Google Scholar]
- NACHLAS M. M., TSOU K. C., DE SOUZA E., CHENG C. S., SELIGMAN A. M. Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted ditetrazole. J Histochem Cytochem. 1957 Jul;5(4):420–436. doi: 10.1177/5.4.420. [DOI] [PubMed] [Google Scholar]
- Offer G., Moos C., Starr R. A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization. J Mol Biol. 1973 Mar 15;74(4):653–676. doi: 10.1016/0022-2836(73)90055-7. [DOI] [PubMed] [Google Scholar]
- Offer G. The antigenicity of myosin and C-protein. Proc R Soc Lond B Biol Sci. 1976 Mar 16;192(1109):439–449. doi: 10.1098/rspb.1976.0022. [DOI] [PubMed] [Google Scholar]
- Omenn G. S., Ontjes D. A., Anfinsen C. B. Fracionation of antibodies against staphylococcal nuclease on 'sepharose' immunoadsorbents. Nature. 1970 Jan 10;225(5228):189–190. doi: 10.1038/225189a0. [DOI] [PubMed] [Google Scholar]
- PADYKULA H. A., HERMAN E. Factors affecting the activity of adenosine triphosphatase and other phosphatases as measured by histochemical techniques. J Histochem Cytochem. 1955 May;3(3):161–169. doi: 10.1177/3.3.161. [DOI] [PubMed] [Google Scholar]
- Pearson J., Sabarra A. A method for obtaining longitudinal cryostat sections of living muscle without contraction artifacts. Stain Technol. 1974 May;49(3):143–146. doi: 10.3109/10520297409116965. [DOI] [PubMed] [Google Scholar]
- Peter J. B., Barnard R. J., Edgerton V. R., Gillespie C. A., Stempel K. E. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry. 1972 Jul 4;11(14):2627–2633. doi: 10.1021/bi00764a013. [DOI] [PubMed] [Google Scholar]
- REVEL J. P. The sarcoplasmic reticulum of the bat cricothroid muscle. J Cell Biol. 1962 Mar;12:571–588. doi: 10.1083/jcb.12.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RINDERKNECHT H. Ultra-rapid fluorescent labelling of proteins. Nature. 1962 Jan 13;193:167–168. doi: 10.1038/193167b0. [DOI] [PubMed] [Google Scholar]
- Richards E. G., Chung C. S., Menzel D. B., Olcott H. S. Chromatography of myosin on diethylaminoethyl-Sephadex A-50. Biochemistry. 1967 Feb;6(2):528–540. doi: 10.1021/bi00854a022. [DOI] [PubMed] [Google Scholar]
- Romanul F. C., Van der Meulen J. P. Slow and fast muscles after cross innervation. Enzymatic and physiological changes. Arch Neurol. 1967 Oct;17(4):387–402. doi: 10.1001/archneur.1967.00470280053006. [DOI] [PubMed] [Google Scholar]
- Sarkar S., Sreter F. A., Gergely J. Light chains of myosins from white, red, and cardiac muscles. Proc Natl Acad Sci U S A. 1971 May;68(5):946–950. doi: 10.1073/pnas.68.5.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmalbruch H., Kamieniecka Z. Histochemical fiber typing and staining intensity in cat and rat muscles. J Histochem Cytochem. 1975 Jun;23(6):395–401. doi: 10.1177/23.6.125297. [DOI] [PubMed] [Google Scholar]
- Sréter F. A., Gergely J. The effect of cross reinnervation on the synthesis of myosin light chains. Biochem Biophys Res Commun. 1974 Jan;56(1):84–89. doi: 10.1016/s0006-291x(74)80318-9. [DOI] [PubMed] [Google Scholar]
- Wagner P. D., Weeds A. G. Studies on the role of myosin alkali light chains. Recombination and hybridization of light chains and heavy chains in subfragment-1 preparations. J Mol Biol. 1977 Jan 25;109(3):455–470. doi: 10.1016/s0022-2836(77)80023-5. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Burridge K. Myosin from cross-reinnervated cat muscles. Evidence for reciprocal transformation of heavy chains. FEBS Lett. 1975 Sep 15;57(2):203–208. doi: 10.1016/0014-5793(75)80717-4. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Hall R., Spurway N. C. Characterization of myosin light chains from histochemically identified fibres of rabbit psoas muscle. FEBS Lett. 1975 Jan 1;49(3):320–324. doi: 10.1016/0014-5793(75)80776-9. [DOI] [PubMed] [Google Scholar]
- Weeds A. G. Light chains from slow-twitch muscle myosin. Eur J Biochem. 1976 Jun 15;66(1):157–173. doi: 10.1111/j.1432-1033.1976.tb10436.x. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Pope B. Chemical studies on light chains from cardiac and skeletal muscle myosins. Nature. 1971 Nov 12;234(5324):85–88. doi: 10.1038/234085a0. [DOI] [PubMed] [Google Scholar]
- Weeds A. G., Trentham D. R., Kean C. J., Buller A. J. Myosin from cross-reinnervated cat muscles. Nature. 1974 Jan 18;247(5437):135–139. doi: 10.1038/247135a0. [DOI] [PubMed] [Google Scholar]
- Wood B. T., Thompson S. H., Goldstein G. Fluorescent antibody staining. 3. Preparation of fluorescein-isothiocyanate-labeled antibodies. J Immunol. 1965 Aug;95(2):225–229. [PubMed] [Google Scholar]