Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1977 Sep 1;74(3):928–939. doi: 10.1083/jcb.74.3.928

Iontophoretic release of cyclic AMP and dispersion of melanosomes within a single melanophore

PMCID: PMC2110108  PMID: 198412

Abstract

Selective dispersion of melanosomes was often observed after iontophoretic injection of cyclic adenosine monophosphate (AMP) from a glass microelectrode positioned in a target melanophore in frog skin (as viewed from above through a microscope), with other melanophores in the field serving as controls. Because the skin has orderly arrays of several types of closely spaced cells, it is probable that at times the microelectrode also impales cells other than melanophores. When cyclic AMP injection inside a cell resulted in dispersion of melanosomes from a perinuclear position into dendritic processes, the onset of dispersion was relatively rapid, in many cases less than 4 min (mean time of onset, 5.3 +/- 2.9 [SD] min). A much slower dispersion (mean time of onset, 19.0 +/- 5.0 min) of melanosomes was observed when the microelectrode was positioned adjacent to a melanophore, and much larger quantities of cyclic AMP were released. In addition, no changes were observed for injections of 5'-AMP or cyclic guanosine monophosphate (GMP) through electrodes positioned inside or adjacent to melanophores. Potential measurements showed that after impaling a clell, a constant transmembrane potential could often be recorded over many minutes, indicating that the membrane tends to seal around the microelectrode. The results indicate that cyclic AMP acts more rapidly on the inside of a cell than when applied outside a cell and allowed to diffuse through the plasma membrane. This study introduces a model system whereby the properties of the plasma membrane and melanocyte- stimulating hormone (MSH) receptors can be studies within a single target cell.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Butcher R. W., Nicholson W. E., Baird C. E., Liddle R. A., Liddle G. W. Adenosine 3',5'-monophosphate (cyclic AMP) as the mediator of the actions of melanocyte stimulating hormone (MSH) and norepinephrine on the frog skin. Endocrinology. 1969 Feb;84(2):362–368. doi: 10.1210/endo-84-2-362. [DOI] [PubMed] [Google Scholar]
  2. Abe K., Robison G. A., Liddle G. W., Butcher R. W., Nicholson W. E., Baird C. E. Role of cyclic AMP in mediating the effects of MSH, norepinephrine, and melatonin on frog skin color. Endocrinology. 1969 Oct;85(4):674–682. doi: 10.1210/endo-85-4-674. [DOI] [PubMed] [Google Scholar]
  3. Bagnara J. T., Taylor J. D., Hadley M. E. The dermal chromatophore unit. J Cell Biol. 1968 Jul;38(1):67–79. doi: 10.1083/jcb.38.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bitensky M. W., Burstein S. R. Effects of cyclic adenosine monophosphate and melanocyte-stimulating hormone on frog skin in vitro. Nature. 1965 Dec 25;208(5017):1282–1284. doi: 10.1038/2081282a0. [DOI] [PubMed] [Google Scholar]
  5. Bitensky M. W., Keirns C. N., Keirns J. J. The amphibian melanocyte: microtubules, cyclic AMP, and organelle translocation. Ann N Y Acad Sci. 1975 Jun 30;253:685–691. doi: 10.1111/j.1749-6632.1975.tb19237.x. [DOI] [PubMed] [Google Scholar]
  6. Bloom F. E., Hoffer B. J., Siggins G. R. Studies on norepinephrine-containing afferents to Purkinje cells of art cerebellum. I. Localization of the fibers and their synapses. Brain Res. 1971 Feb 5;25(3):501–521. doi: 10.1016/0006-8993(71)90457-4. [DOI] [PubMed] [Google Scholar]
  7. Bloom F. E., Siggins G. R., Hoffer B. J., Segal M., Oliver A. P. Cyclic nucleotdides in the central synaptic actions of catecholamines. Adv Cyclic Nucleotide Res. 1975;5:603–618. [PubMed] [Google Scholar]
  8. Bradley P. B., Candy J. M. Iontophoretic release of acetylcholine, noradrenaline, 5-hydroxytryptamine and D-lysergic acid diethylamide from micropipettes. Br J Pharmacol. 1970 Oct;40(2):194–201. doi: 10.1111/j.1476-5381.1970.tb09913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DEL CASTILLO J., KATZ B. On the localization of acetylcholine receptors. J Physiol. 1955 Apr 28;128(1):157–181. doi: 10.1113/jphysiol.1955.sp005297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DEL CASTILLO L., KATZ B. A study of curare action with an electrical micromethod. Proc R Soc Lond B Biol Sci. 1957 May 7;146(924):339–356. doi: 10.1098/rspb.1957.0015. [DOI] [PubMed] [Google Scholar]
  11. ENGBAEK L., HOSHIKO T. Electrical potential gradients through frog skin. Acta Physiol Scand. 1957 Jul 1;39(4):348–355. doi: 10.1111/j.1748-1716.1957.tb01433.x. [DOI] [PubMed] [Google Scholar]
  12. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hoffer B. J., Neff N. H., Siggins G. R. Microiontophoretic release of norepinephrine from micropipettes. Neuropharmacology. 1971 Mar;10(21):175–180. doi: 10.1016/0028-3908(71)90038-4. [DOI] [PubMed] [Google Scholar]
  14. Hoffer B. J., Siggins G. R., Bloom F. E. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 1971 Feb 5;25(3):523–534. doi: 10.1016/0006-8993(71)90458-6. [DOI] [PubMed] [Google Scholar]
  15. Lande S., Lerner A. B., Upton G. V. Pituitary peptides. Isolation of new peptides related to beta-melanocyte-stimulating hormone. J Biol Chem. 1965 Nov;240(11):4259–4263. [PubMed] [Google Scholar]
  16. Malawista S. E. Microtubules and the movement of melanin granules in frog dermal melanocytes. Ann N Y Acad Sci. 1975 Jun 30;253:702–710. doi: 10.1111/j.1749-6632.1975.tb19239.x. [DOI] [PubMed] [Google Scholar]
  17. Martin A. R., Snell R. S. A note on transmembrane potential in dermal melanophores of the frog and movement of melanin granules. J Physiol. 1968 Apr;195(3):755–759. doi: 10.1113/jphysiol.1968.sp008487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McGuire J., Moellmann G., McKeon F. Cytochalasin B and pigment granule translocation. Cytochalasin B reverses and prevents pigment granule dispersion caused by dibutyryl cyclic AMP and theophylline in Rana pipiens Melanocytes. J Cell Biol. 1972 Mar;52(3):754–758. doi: 10.1083/jcb.52.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moellmann G., McGuire J. Correlation of cytoplasmic microtubules and 10-nm filaments with the movement of pigment granules in cutaneous melanocytes of Rana pipiens. Ann N Y Acad Sci. 1975 Jun 30;253:711–722. doi: 10.1111/j.1749-6632.1975.tb19240.x. [DOI] [PubMed] [Google Scholar]
  20. Segal M., Bloom F. E. The action of norepinephrine in the rat hippocampus. II. Activation of the input pathway. Brain Res. 1974 May 31;72(1):99–114. doi: 10.1016/0006-8993(74)90653-2. [DOI] [PubMed] [Google Scholar]
  21. Siggins G. R., Hoffer B. J., Bloom F. E. Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. 3. Evidence for mediation of norepinephrine effects by cyclic 3',5'-adenosine monophosphate. Brain Res. 1971 Feb 5;25(3):535–553. doi: 10.1016/0006-8993(71)90459-8. [DOI] [PubMed] [Google Scholar]
  22. Thomas R. C., Wilson V. J. Marking single neurons by staining with intracellular recording microelectrodes. Science. 1966 Mar 25;151(3717):1538–1539. doi: 10.1126/science.151.3717.1538. [DOI] [PubMed] [Google Scholar]
  23. Thomas R. C., Wilson V. J. Precise localization of Renshaw cells with a new marking technique. Nature. 1965 Apr 10;206(980):211–213. doi: 10.1038/206211b0. [DOI] [PubMed] [Google Scholar]
  24. Varga J. M., Dipasquale A., Pawelek J., McGuire J. S., Lerner A. B. Regulation of melanocyte stimulating hormone action at the receptor level: discontinuous binding of hormone to synchronized mouse melanoma cells during the cell cycle. Proc Natl Acad Sci U S A. 1974 May;71(5):1590–1593. doi: 10.1073/pnas.71.5.1590. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES