Abstract
To advance our understanding of the organization of cholesterol within cell membranes, we used digitonin in freeze-fracture investigations of model lipid vesicles and tissues. Cholesterol suspensions or multilamellar liposomes composed of phosphatidylcholine with and without cholesterol were exposed to digitonin. Freeze-fracture replicas of those multilamellar liposomes containing cholesterol displayed either 50--60-nm wide intramembrane corrugations or extramembrane tubular complexes. Comparable intramembrane hemitubular scallops and extra-cellular free tubular complexes were observed in thin sections. Exposure of sperm, erythrocytes (whole and ghosts), and intact tissues (skin, liver, adrenal gland, epididymis) to digitonin produced the same types of intra- and extramembrane complexes or furrows as were formed in liposomes. The plasma membrane of guinea pig serum tail had two unfurrowed regions: the annulus and the zipper. Incubating erythrocyte membranes with digitonin resulted in rapid displacement of cholesterol, accompanied by intramembrane particle clustering and membrane faceting, a feature which we did not see in the intact epithelia studied. In freeze-fractured epithelia, we found that plasma membranes, lysosomes, and some vesicular organelles commonly furrowed, but that mitochondrial membranes and nuclear envelopes were generally spared, correlating well with their known cholesterol content. Finally, plasma membrane corrugations approached but did not impinge on either gap or tight junctions, or on coated vesicles. We conclude that freeze-fracture of membranes exposed to digitonin: (a) reveals distinctive cholesterol- digitonin structural complexes; (b) distinguishes cholesterol-rich and - poor organelle membranes; and (c) demonstrates membrane domains rich or poor in cholesterol.
Full Text
The Full Text of this article is available as a PDF (7.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bachi T., Schnebli H. P. Reaction of lectins with human erythrocytes. II. Mapping of conA receptors by freeze-etching electron microscopy. Exp Cell Res. 1975 Mar 15;91(2):285–295. doi: 10.1016/0014-4827(75)90106-8. [DOI] [PubMed] [Google Scholar]
- Bangham A. D. Lipid bilayers and biomembranes. Annu Rev Biochem. 1972;41:753–776. doi: 10.1146/annurev.bi.41.070172.003541. [DOI] [PubMed] [Google Scholar]
- Bergelson L. D., Barsukov L. I. Topological asymmetry of phospholipids in membranes. Science. 1977 Jul 15;197(4300):224–230. doi: 10.1126/science.327544. [DOI] [PubMed] [Google Scholar]
- Brockerhoff H. Model of interaction of polar lipids, cholesterol, and proteins in biological membranes. Lipids. 1974 Sep;9(9):645–650. doi: 10.1007/BF02532169. [DOI] [PubMed] [Google Scholar]
- Carpentier J., Perrelet A., Orci L. Morphological changes of the adipose cell plasma membrane during lipolysis. J Cell Biol. 1977 Jan;72(1):104–117. doi: 10.1083/jcb.72.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper R. A. Abnormalities of cell-membrane fluidity in the pathogenesis of disease. N Engl J Med. 1977 Aug 18;297(7):371–377. doi: 10.1056/NEJM197708182970707. [DOI] [PubMed] [Google Scholar]
- DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
- Dallner G., Ernster L. Subfractionation and composition of microsomal membranes: a review. J Histochem Cytochem. 1968 Oct;16(10):611–632. doi: 10.1177/16.10.611. [DOI] [PubMed] [Google Scholar]
- Eberspacher B. E., Organisciak D. T., Massaro E. J. Alterations in lipid composition of liver cell plasma membranes during development. J Exp Zool. 1977 Feb;199(2):289–296. doi: 10.1002/jez.1401990213. [DOI] [PubMed] [Google Scholar]
- Elgsaeter A., Branton D. Intramembrane particle aggregation in erythrocyte ghosts. I. The effects of protein removal. J Cell Biol. 1974 Dec;63(3):1018–1036. doi: 10.1083/jcb.63.3.1018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elias P. M., Fritsch P., Tappeiner G., Mittermayer H., Wolff K. Experimental staphylococcal toxic epidermal necrolysis (TEN) in adult humans and mice. J Lab Clin Med. 1974 Sep;84(3):414–424. [PubMed] [Google Scholar]
- Elias P. M., Goerke J., Friend D. S. Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol. 1977 Dec;69(6):535–546. doi: 10.1111/1523-1747.ep12687968. [DOI] [PubMed] [Google Scholar]
- Fisher K. A. Analysis of membrane halves: cholesterol. Proc Natl Acad Sci U S A. 1976 Jan;73(1):173–177. doi: 10.1073/pnas.73.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flickinger C. J. The postnatal development of the Sertoli cells of the mouse. Z Zellforsch Mikrosk Anat. 1967;78(1):92–113. doi: 10.1007/BF00344405. [DOI] [PubMed] [Google Scholar]
- Friend D. S., Orci L., Perrelet A., Yanagimachi R. Membrane particle changes attending the acrosome reaction in guinea pig spermatozoa. J Cell Biol. 1977 Aug;74(2):561–577. doi: 10.1083/jcb.74.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frühling J., Penasse W., Sand G., Mrena E., Claude A. Etude comparative par microscopie électronique des réactions cytochimiques de la digitionine avec le cholstérol et d'autres lipides présentes dans les cellules de la corticosurrénale. Arch Int Physiol Biochim. 1970 Dec;78(5):997–998. [PubMed] [Google Scholar]
- Goodenough D. A., Stoeckenius W. The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and x-ray diffraction. J Cell Biol. 1972 Sep;54(3):646–656. doi: 10.1083/jcb.54.3.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J., Shafer A. W., Glass E. A., Karnovsky M. L. Metabolic and morphological observations on the effect of surface-active agents of leukocytes. J Cell Biol. 1967 Mar;32(3):629–647. doi: 10.1083/jcb.32.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haest C. W., Verkleij A. J., De Gier J., Scheek R., Ververgaert P. H., Van Deenen L. L. The effect of lipid phase transitions on the architecture of bacterial membranes. Biochim Biophys Acta. 1974 Jul 12;356(1):17–26. doi: 10.1016/0005-2736(74)90290-9. [DOI] [PubMed] [Google Scholar]
- Henning R., Kaulen H. D., Stoffel W. Biochemical analysis of the pinocytotic process. I. Isolation and chemical composition of the lysosomal and the plasma membrane of the rat liver cell. Hoppe Seylers Z Physiol Chem. 1970 Oct;351(10):1191–1199. doi: 10.1515/bchm2.1970.351.2.1191. [DOI] [PubMed] [Google Scholar]
- Juliano R. L. The proteins of the erythrocyte membrane. Biochim Biophys Acta. 1973 Dec 28;300(4):341–378. doi: 10.1016/0304-4157(73)90013-0. [DOI] [PubMed] [Google Scholar]
- Kasper C. B. Isolation and properties of the nuclear envelope. Methods Enzymol. 1974;31:279–292. doi: 10.1016/0076-6879(74)31029-4. [DOI] [PubMed] [Google Scholar]
- Lange Y., D'Alessandro J. S. Characterization of mechanisms for transfer of cholesterol between human erythrocytes and plasma. Biochemistry. 1977 Oct 4;16(20):4339–4343. doi: 10.1021/bi00639a002. [DOI] [PubMed] [Google Scholar]
- Lévy M., Toury R., André J. Séparation des membranes mitochondriales. Purification et caractérisation enzymatique de la membrane externe. Biochim Biophys Acta. 1967 Sep 9;135(4):599–613. doi: 10.1016/0005-2736(67)90092-2. [DOI] [PubMed] [Google Scholar]
- Melchior D. L., Steim J. M. Thermotropic transitions in biomembranes. Annu Rev Biophys Bioeng. 1976;5:205–238. doi: 10.1146/annurev.bb.05.060176.001225. [DOI] [PubMed] [Google Scholar]
- Miller R. G., Torreyson P. Crystalline patterns of myelin lipids visualized by freeze fracture. Biochim Biophys Acta. 1977 Apr 18;466(2):325–335. doi: 10.1016/0005-2736(77)90228-0. [DOI] [PubMed] [Google Scholar]
- Moses H. L., Davis W. W., Rosenthal A. S., Garren L. D. Adrenal cholesterol: localization by electron-microscope autoradiography. Science. 1969 Mar 14;163(3872):1203–1205. doi: 10.1126/science.163.3872.1203. [DOI] [PubMed] [Google Scholar]
- Napolitano L. M., Lopez J., Saland L., Sterzing P. V., Kelley R. O. Localization of cholesterol in peripheral nerve: use of ( 3 H) digitonin for electron microscopic autoradiography. Anat Rec. 1972 Oct;174(2):157–164. doi: 10.1002/ar.1091740202. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. Transmembrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence over surface components. Biochim Biophys Acta. 1976 Apr 13;457(1):57–108. doi: 10.1016/0304-4157(76)90014-9. [DOI] [PubMed] [Google Scholar]
- Okrös I. Digitonin reaction in electron microscopy. Histochemie. 1968;13(1):91–96. doi: 10.1007/BF00303878. [DOI] [PubMed] [Google Scholar]
- Pearse B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1255–1259. doi: 10.1073/pnas.73.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto da Silva P. Translational mobility of the membrane intercalated particles of human erythrocyte ghosts. pH-dependent, reversible aggregation. J Cell Biol. 1972 Jun;53(3):777–787. doi: 10.1083/jcb.53.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SPERRY W. M. QUANTITATIVE ISOLATION OF STEROLS. J Lipid Res. 1963 Apr;4:221–225. [PubMed] [Google Scholar]
- Saland L. C., Napolitano L. M. Stabilization of cholesterol in myelin with digitonin: observation with polarized light. J Histochem Cytochem. 1977 Apr;25(4):280–286. doi: 10.1177/25.4.404353. [DOI] [PubMed] [Google Scholar]
- Scallen T. J., Dietert S. E. The quantitative retention of cholesterol in mouse liver prepared for electron microscopy by fixation in a digitonin-containing aldehyde solution. J Cell Biol. 1969 Mar;40(3):802–813. doi: 10.1083/jcb.40.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Speth V., Wunderlich F. Membranes of Tetrahymena. II. Direct visualization of reversible transitions in biomembrane structure induced by temperature. Biochim Biophys Acta. 1973 Feb 16;291(3):621–628. doi: 10.1016/0005-2736(73)90467-7. [DOI] [PubMed] [Google Scholar]
- Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterzing P. R., Napolitano L. M. Tissue cholesterol preservation: factors associated with retention of cholesterol in rat sciatic nerve fixed for electron microscopy. Anat Rec. 1972 Aug;173(4):485–491. doi: 10.1002/ar.1091730409. [DOI] [PubMed] [Google Scholar]
- Turner J. D., Rouser G. Removal of lipid from intact erythrocytes and ghosts by aqueous solutions and its relevance to membrane structure. Lipids. 1974 Jan;9(1):49–54. doi: 10.1007/BF02533213. [DOI] [PubMed] [Google Scholar]
- Ververgaert P. H., Verkleij A. J., Verhoeven J. J., Elbers P. F. Spray-freezing of liposomes. Biochim Biophys Acta. 1973 Jul 18;311(4):651–654. doi: 10.1016/0005-2736(73)90140-5. [DOI] [PubMed] [Google Scholar]
- Warren G. B., Houslay M. D., Metcalfe J. C., Birdsall N. J. Cholesterol is excluded from the phospholipid annulus surrounding an active calcium transport protein. Nature. 1975 Jun 26;255(5511):684–687. doi: 10.1038/255684a0. [DOI] [PubMed] [Google Scholar]
- Williamson J. R. Ultrastructural localization and distribution of free cholesterol (3-beta-hydroxysterols) in tissues. J Ultrastruct Res. 1969 Apr;27(2):118–133. [PubMed] [Google Scholar]
- Wunderlich F., Wallach D. F., Speth V., Fischer H. Differential effects of temperature on the nuclear and plasma membranes of lymphoid cells. A study by freeze-etch electron microscopy. Biochim Biophys Acta. 1974 Nov 27;373(1):34–43. doi: 10.1016/0005-2736(74)90102-3. [DOI] [PubMed] [Google Scholar]