Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Aug 1;78(2):441–450. doi: 10.1083/jcb.78.2.441

Tyrosyltubulin ligase and colchicine binding activity in synchronized Chinese hamster cells

PMCID: PMC2110114  PMID: 567652

Abstract

Tyrosyltubulin ligase (TTL) was found to be present in CHO and V79 Chinese hamster cells grown in tissue culture. The enzyme is soluble and requires potassium, magnesium, and ATP for maximum activity and requires tubulin as a substrate. TTL was analyzed through the cell cycle of V79 and CHO Chinese hamster cells. The enzyme showed two peaks of activity in V79 cells at 4 h and 7 h after mitotic selection, corresponding to the early S and mid to late S phases of the cell cycle. In CHO cells the enzyme displayed a major peak of activity at mid S and a minor peak or plateau during early S. Tubulin, as measured by (3H)colchicine binding, was shown to increase through S phase and reach a maximum late in the cycle during G2 approx. 3 h after maximum TTL activity.

Full Text

The Full Text of this article is available as a PDF (732.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Clark J. I. Membrane-microtubule interactions: concanavalin A capping induced redistribution of cytoplasmic microtubules and colchicine binding proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4976–4980. doi: 10.1073/pnas.72.12.4976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barra H. S., Arce C. A., Rodríguez J. A., Caputto R. Some common properties of the protein that incorporates tyrosine as a single unit and the microtubule proteins. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1384–1390. doi: 10.1016/0006-291x(74)90351-9. [DOI] [PubMed] [Google Scholar]
  3. Barra H. S., Rodriguez J. A., Arce C. A., Caputto R. A soluble preparation from rat brain that incorporates into its own proteins ( 14 C)arginine by a ribonuclease-sensitive system and ( 14 C)tyrosine by a ribonuclease-insensitive system. J Neurochem. 1973 Jan;20(1):97–108. doi: 10.1111/j.1471-4159.1973.tb12108.x. [DOI] [PubMed] [Google Scholar]
  4. Borisy G. G. A rapid method for quantitative determination of microtubule protein using DEAE-cellulose filters. Anal Biochem. 1972 Dec;50(2):373–385. doi: 10.1016/0003-2697(72)90046-2. [DOI] [PubMed] [Google Scholar]
  5. Borisy G. G., Taylor E. W. The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J Cell Biol. 1967 Aug;34(2):535–548. doi: 10.1083/jcb.34.2.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bray J. J., Austin L. Axoplasmic transport of 14C proteins at two rates in chicken sciatic nerve. Brain Res. 1969 Jan;12(1):230–233. doi: 10.1016/0006-8993(69)90069-9. [DOI] [PubMed] [Google Scholar]
  7. Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Conrad A. H. Thymidylate synthetase activity in cultured mammalian cells. J Biol Chem. 1971 Mar 10;246(5):1318–1323. [PubMed] [Google Scholar]
  9. Deanin G. G., Gordon M. W. The distribution of tyrosyltubulin ligase in brain and other tissues. Biochem Biophys Res Commun. 1976 Jul 26;71(2):676–683. doi: 10.1016/0006-291x(76)90841-x. [DOI] [PubMed] [Google Scholar]
  10. Eipper B. A. Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2283–2287. doi: 10.1073/pnas.69.8.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forrest G. L., Klevecz R. R. Synthesis and degradation of microtubule protein in synchronized Chinese hamster cells. J Biol Chem. 1972 May 25;247(10):3147–3152. [PubMed] [Google Scholar]
  12. Goodman D. B., Rasmussen H., DiBella F., Guthrow C. E., Jr Cyclic adenosine 3':5'-monophosphate-stimulated phosphorylation of isolated neurotubule subunits. Proc Natl Acad Sci U S A. 1970 Oct;67(2):652–659. doi: 10.1073/pnas.67.2.652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. James K. A., Austin L. The binding in vitro of colchicine to axoplasmic proteins from chicken sciatic nerve. Biochem J. 1970 May;117(4):773–777. doi: 10.1042/bj1170773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Karlsson J. O., Sjöstrand J. The effect of colchicine on the axonal transport of protein in the optic nerve and tract of the rabbit. Brain Res. 1969 May;13(3):617–619. doi: 10.1016/0006-8993(69)90274-1. [DOI] [PubMed] [Google Scholar]
  15. Klevecz R. R. An automated system for cell cycle analysis. Anal Biochem. 1972 Oct;49(2):407–415. doi: 10.1016/0003-2697(72)90443-5. [DOI] [PubMed] [Google Scholar]
  16. Klevecz R. R. Quantized generation time in mammalian cells as an expression of the cellular clock. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4012–4016. doi: 10.1073/pnas.73.11.4012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Klevecz R. R., Ruddle F. H. Cyclic changes in enzyme activity in synchronized mammalian cell cultures. Science. 1968 Feb 9;159(3815):634–636. doi: 10.1126/science.159.3815.634. [DOI] [PubMed] [Google Scholar]
  18. Klevecz R. R. Temporal order in mammalian cells. I. The periodic synthesis of lactate dehydrogenase in the cell cycle. J Cell Biol. 1969 Nov;43(2):207–219. doi: 10.1083/jcb.43.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kreutzberg G. W. Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc Natl Acad Sci U S A. 1969 Mar;62(3):722–728. doi: 10.1073/pnas.62.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lacy P. E., Howell S. L., Young D. A., Fink C. J. New hypothesis of insulin secretion. Nature. 1968 Sep 14;219(5159):1177–1179. doi: 10.1038/2191177a0. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  23. Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Noland B. J., Walters R. A., Tobey R. A., Hardin J. M., Shepherd G. R. Effects of ionizing radiation upon intracellular levels of soluble microtubule protein in cultured mammalian cells. Exp Cell Res. 1974 Apr;85(2):234–238. doi: 10.1016/0014-4827(74)90122-0. [DOI] [PubMed] [Google Scholar]
  25. Oliver J. M., Ukena T. E., Berlin R. D. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci U S A. 1974 Feb;71(2):394–398. doi: 10.1073/pnas.71.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Olmsted J. B., Carlson K., Klebe R., Ruddle F., Rosenbaum J. Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc Natl Acad Sci U S A. 1970 Jan;65(1):129–136. doi: 10.1073/pnas.65.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Raybin D., Flavin M. An enzyme tyrosylating alpha-tubulin and its role in microtubule assembly. Biochem Biophys Res Commun. 1975 Aug 4;65(3):1088–1095. doi: 10.1016/s0006-291x(75)80497-9. [DOI] [PubMed] [Google Scholar]
  28. Raybin D., Flavin M. Enzyme which specifically adds tyrosine to the alpha chain of tubulin. Biochemistry. 1977 May 17;16(10):2189–2194. doi: 10.1021/bi00629a023. [DOI] [PubMed] [Google Scholar]
  29. Raybin D., Flavin M. Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J Cell Biol. 1977 May;73(2):492–504. doi: 10.1083/jcb.73.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. TAYLOR E. W. THE MECHANISM OF COLCHICINE INHIBITION OF MITOSIS. I. KINETICS OF INHIBITION AND THE BINDING OF H3-COLCHICINE. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL:160. doi: 10.1083/jcb.25.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tilney L. G., Gibbins J. R. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J Cell Biol. 1969 Apr;41(1):227–250. doi: 10.1083/jcb.41.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Vasiliev J. M., Gelfand I. M. Interactions of normal and neoplastic fibroblasts with the substratum. Ciba Found Symp. 1973;14:311–331. doi: 10.1002/9780470719978.ch15. [DOI] [PubMed] [Google Scholar]
  34. Weisenberg R. C., Borisy G. G., Taylor E. W. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry. 1968 Dec;7(12):4466–4479. doi: 10.1021/bi00852a043. [DOI] [PubMed] [Google Scholar]
  35. Weisenberg R. C. Microtubule formation in vitro in solutions containing low calcium concentrations. Science. 1972 Sep 22;177(4054):1104–1105. doi: 10.1126/science.177.4054.1104. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES