Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Aug 1;78(2):451–464. doi: 10.1083/jcb.78.2.451

Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia

PMCID: PMC2110115  PMID: 690175

Abstract

The morphology of the transition zone between the terminal plate of the basal body and the 9 + 2 region of the somatic (non-oral) cilium has been examined in Paramecium tetraurelia. Freeze-fracture and thin- section techniques disclosed both membrane specializations and various internal structural linkages. Freeze-fracture material revealed sets of particles interrupting the unit membrane. The more distal of these form plaquelike arrays while the proximal set of particles forms the ciliary "necklace." The plaque regions correspond to anionic sites on the outer membrane surface as revealed by binding of polycationic ferritin. Both the plaque particles and the necklace particles appear to be in contact with outer doublet microtubules via a complex of connecting structures. In the interior of the transition zone an axosomal plate supports an axosome surrounded by a ring of lightly packed material. Only one of the two central tubules of the axoneme reaches and penetrates the axosome. Below the axosomal plate four rings, each approx. 20 nm wide, connect adjacent outer doublets. An intermediate plate lies proximal to these rings, and a terminal plate marks the proximal boundary of this zone. Nine transitional fibers extend from the region of the terminal plate to the plasmalemma. The observations described above have been used to construct a three-dimensional model of the transition region of "wild-type" Paramecium somatic cilia. It is anticipated that this model will be useful in future studies concerning possible function of transition-zone specializations, since Paramecium may be examined in both normal and reversed ciliary beating modes, and since mutants incapable of reverse beating are available.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D. A reinvestigation of cross-sections of cilia. J Cell Biol. 1968 Jun;37(3):825–831. doi: 10.1083/jcb.37.3.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. D. The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis. J Cell Biol. 1969 Mar;40(3):716–733. doi: 10.1083/jcb.40.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson E., Dumont J. N. A comparative study of the concrement vacuole of certain endocommensal ciliates--a so-called mechanoreceptor. J Ultrastruct Res. 1966 Jun;15(3):414–450. doi: 10.1016/s0022-5320(66)80117-x. [DOI] [PubMed] [Google Scholar]
  4. Anderson R. G., Hein C. E. Distribution of anionic sites on the oviduct ciliary membrane. J Cell Biol. 1977 Feb;72(2):482–492. doi: 10.1083/jcb.72.2.482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Anderson R. G. The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol. 1972 Aug;54(2):246–265. doi: 10.1083/jcb.54.2.246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Behnke O., Forer A. Evidence for four classes of microtubules in individual cells. J Cell Sci. 1967 Jun;2(2):169–192. doi: 10.1242/jcs.2.2.169. [DOI] [PubMed] [Google Scholar]
  7. Bergstrom B. H., Henley C. Flagellar necklaces: freeze-etch observations. J Ultrastruct Res. 1973 Mar;42(5):551–553. doi: 10.1016/s0022-5320(73)80026-7. [DOI] [PubMed] [Google Scholar]
  8. Blum J. J. Existence of a breaking point in cilia and flagella. J Theor Biol. 1971 Nov;33(2):257–263. doi: 10.1016/0022-5193(71)90065-8. [DOI] [PubMed] [Google Scholar]
  9. Browning J. L., Nelson D. L., Hansma H. G. Ca2+ influx across the excitable membrane of behavioural mutants of Paramecium. Nature. 1976 Feb 12;259(5543):491–494. doi: 10.1038/259491a0. [DOI] [PubMed] [Google Scholar]
  10. Byrne B. J., Byrne B. C. An ultrastructural correlate of the membrane mutant "paranoiac" in Paramecium. Science. 1978 Mar 10;199(4333):1091–1093. doi: 10.1126/science.628834. [DOI] [PubMed] [Google Scholar]
  11. Dingle A. D., Fulton C. Development of the flagellar apparatus of Naegleria. J Cell Biol. 1966 Oct;31(1):43–54. doi: 10.1083/jcb.31.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dippell R. V. Effects of nuclease and protease digestion on the ultrastructure of Paramecium basal bodies. J Cell Biol. 1976 Jun;69(3):622–637. doi: 10.1083/jcb.69.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dippell R. V. The development of basal bodies in paramecium. Proc Natl Acad Sci U S A. 1968 Oct;61(2):461–468. doi: 10.1073/pnas.61.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Doolin P. F., Birge W. J. Ultrastructural organization of cilia and basal bodies of the epithelium of the choroid plexus in the chick embryo. J Cell Biol. 1966 May;29(2):333–345. doi: 10.1083/jcb.29.2.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fisher G., Kaneshiro E. S., Peters P. D. Divalent cation affinity sites in Paramecium aurelia. J Cell Biol. 1976 May;69(2):429–442. doi: 10.1083/jcb.69.2.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Flower N. E. Particles within membranes: a freeze-etch view. J Cell Sci. 1971 Sep;9(2):435–441. doi: 10.1242/jcs.9.2.435. [DOI] [PubMed] [Google Scholar]
  17. GIBBONS I. R., GRIMSTONE A. V. On flagellar structure in certain flagellates. J Biophys Biochem Cytol. 1960 Jul;7:697–716. doi: 10.1083/jcb.7.4.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilula N. B., Satir P. The ciliary necklace. A ciliary membrane specialization. J Cell Biol. 1972 May;53(2):494–509. doi: 10.1083/jcb.53.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hansma H. G., Kung C. Defective ion regulation in a class of membrane-excitation mutants in Paramecium. Biochim Biophys Acta. 1976 Jun 4;436(1):128–139. doi: 10.1016/0005-2736(76)90225-x. [DOI] [PubMed] [Google Scholar]
  20. Kung C., Chang S. Y., Satow Y., Houten J. V., Hansma H. Genetic dissection of behavior in paramecium. Science. 1975 May 30;188(4191):898–904. [PubMed] [Google Scholar]
  21. Linck R. W. Comparative isolation of cilia and flagella from the lamellibranch mollusc, Aequipecten irradians. J Cell Sci. 1973 Mar;12(2):345–367. doi: 10.1242/jcs.12.2.345. [DOI] [PubMed] [Google Scholar]
  22. Menco B. P., Dodd G. H., Davey M., Bannister L. H. Presence of membrane particles in freeze-etched bovine olfactory cilia. Nature. 1976 Oct 14;263(5578):597–599. doi: 10.1038/263597a0. [DOI] [PubMed] [Google Scholar]
  23. O'Hara P. T. Spiral tilt of triplet fibers in human leukocyte centrioles. J Ultrastruct Res. 1970 Apr;31(1):195–198. doi: 10.1016/s0022-5320(70)90154-1. [DOI] [PubMed] [Google Scholar]
  24. Ogura A., Takahashi K. Artificial deciliation causes loss of calcium-dependent responses in Paramecium. Nature. 1976 Nov 11;264(5582):170–172. doi: 10.1038/264170a0. [DOI] [PubMed] [Google Scholar]
  25. Peachey L. D. The sarcoplasmic reticulum and transverse tubules of the frog's sartorius. J Cell Biol. 1965 Jun;25(3 Suppl):209–231. doi: 10.1083/jcb.25.3.209. [DOI] [PubMed] [Google Scholar]
  26. Satir B., Sale W. S., Satir P. Membrane renewal after dibucaine deciliation of Tetrahymena. Freeze-fracture technique, cilia, membrane structure. Exp Cell Res. 1976 Jan;97:83–91. doi: 10.1016/0014-4827(76)90657-1. [DOI] [PubMed] [Google Scholar]
  27. Satow Y., Hansma H. G., Kung C. The effect of sodium on "paranoiac"- a membrane mutant of Paramecium. Comp Biochem Physiol A Comp Physiol. 1976;54(3):323–329. doi: 10.1016/s0300-9629(76)80120-x. [DOI] [PubMed] [Google Scholar]
  28. Sattler C. A., Staehelin L. A. Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia. J Cell Biol. 1974 Aug;62(2):473–490. doi: 10.1083/jcb.62.2.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Speth V., Wunderlich F. Evidence for different dispositions of particles associated with freeze-etched membranes. Brief report. Protoplasma. 1972;75(3):341–344. doi: 10.1007/BF01279825. [DOI] [PubMed] [Google Scholar]
  30. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  31. Thornhill R. A. The ultrastructure of the olfactory epithelium of the lamprey Lampetra fluviatilis. J Cell Sci. 1967 Dec;2(4):591–602. doi: 10.1242/jcs.2.4.591. [DOI] [PubMed] [Google Scholar]
  32. Tucker J. B. Development and deployment of cilia, basal bodies, and other microtubular organelles in the cortex of the ciliate Nassula. J Cell Sci. 1971 Nov;9(3):539–567. doi: 10.1242/jcs.9.3.539. [DOI] [PubMed] [Google Scholar]
  33. Weiss R. L., Goodenough D. A., Goodenough U. W. Membrane particle arrays associated with the basal body and with contractile vacuole secretion in Chlamydomonas. J Cell Biol. 1977 Jan;72(1):133–143. doi: 10.1083/jcb.72.1.133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Witman G. B., Carlson K., Berliner J., Rosenbaum J. L. Chlamydomonas flagella. I. Isolation and electrophoretic analysis of microtubules, matrix, membranes, and mastigonemes. J Cell Biol. 1972 Sep;54(3):507–539. doi: 10.1083/jcb.54.3.507. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES