Abstract
Some of the ultrastructural (freeze-etching technique), morphological, and biochemical effects of Sendai virus interaction with chicken erythrocytes have been studied under fusogenic (in the presence of CaCl2) and nonfusogenic (in the presence of ethyleneglycol-bis-N,N'- tetraacetic acid, [EGTA]) conditions. The following phenomena occur, irrespective of the presence of CaCl2 or EGTA: (a) binding of iodinated virus particles to chicken erythrocytes at 4 degrees C and their partial release from the cells at 37 degrees C; (b) gradual incorporation of the viral envelope and viral M-protein into plasma membrane, as visualized in the protoplasmic and exoplasmic fracture (P and E, respectively) faces of the membrane; and (c) virus-dependent transient clustering of intramembrane particles at 4 degrees C, which is reversible after transferring the cells back to 37 degrees C. The following virus-induced phenomena occur only in the presence of CaCl2: (a) rounding of cells followed by their fusion; (b) transient decrease in the density of intramembrane particles; and (c) the virus induces uptake of 45CaCl2 by chicken erythrocytes. The uptake is specific as it is inhibited by LaCl3, and no accumulation of [14C]glucose-1-phosphate ([14C]G-1-P) could be observed under the 45 CaCl2 uptake conditions. The data show that fusion of virus with plasma membrane is a Ca++- independent process and, as such, it should be distinguished from the virus-induced membrane-membrane and cell fusion processes. The latter is absolutely dependent on the rise of intracellular Ca++, as reflected by the fact that Ca++-induced rounding of chicken erythrocytes always precedes fusion (Volsky, D. and A. Loyter. 1977.Biochim. Biophys. Acta 471:253--259).
Full Text
The Full Text of this article is available as a PDF (3.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. Mechanisms of cell fusion. Nature. 1975 Jan 17;253(5488):194–195. doi: 10.1038/253194a0. [DOI] [PubMed] [Google Scholar]
- Ahkong Q. F., Fisher D., Tampion W., Lucy J. A. The fusion of erythrocytes by fatty acids, esters, retinol and alpha-tocopherol. Biochem J. 1973 Sep;136(1):147–155. doi: 10.1042/bj1360147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ahkong Q. F., Tampion W., Lucy J. A. Promotion of cell fusion by divalent cation ionophores. Nature. 1975 Jul 17;256(5514):208–209. doi: 10.1038/256208a0. [DOI] [PubMed] [Google Scholar]
- Apostolov K., Almeida J. D. Interaction of Sendai (HVJ) virus with human erythrocytes: a morphological study of haemolysis cell fusion. J Gen Virol. 1972 Jun;15(3):227–234. doi: 10.1099/0022-1317-15-3-227. [DOI] [PubMed] [Google Scholar]
- Apostolov K., Poste G. Interaction of Sendai virus with human erythrocytes: a system for the study of membrane fusion. Microbios. 1972 Dec;6(24):247–261. [PubMed] [Google Scholar]
- Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
- Bächi T., Aguet M., Howe C. Fusion of erythrocytes by Sendai virus studied by immuno-freeze-etching. J Virol. 1973 Jun;11(6):1004–1012. doi: 10.1128/jvi.11.6.1004-1012.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bächi T., Howe C. Fusion of erythrocytes by Sendai virus studied by electron microscopy. Proc Soc Exp Biol Med. 1972 Oct;141(1):141–149. doi: 10.3181/00379727-141-36733. [DOI] [PubMed] [Google Scholar]
- Cochrane D. E., Douglas W. W. Calcium-induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48-80 or the ionophores A-23187 and X-537A. Proc Natl Acad Sci U S A. 1974 Feb;71(2):408–412. doi: 10.1073/pnas.71.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazitt Y., Loyter A., Reichler Y., Ohad I. Correlation between changes in the membrane organization and susceptibility to phospholipase C attack induced by ATP depletion of rat erythrocytes. Biochim Biophys Acta. 1976 Feb 6;419(3):479–492. doi: 10.1016/0005-2736(76)90260-1. [DOI] [PubMed] [Google Scholar]
- Goniakowska-Witalińska L., Witaliński W. Evidence for a correlation between the number of marginal band microtubules and the size of vertebrate erthrocytes. J Cell Sci. 1976 Nov;22(2):397–401. doi: 10.1242/jcs.22.2.397. [DOI] [PubMed] [Google Scholar]
- Hart C. A., Fisher D., Hallinan T., Lucy J. A. Effects of calcium ions and the bivalent cation ionophore A23187 on the agglutination and fusion of chicken erythrocytes by Sendai virus. Biochem J. 1976 Jul 15;158(1):141–145. doi: 10.1042/bj1580141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hewitt J. A., Nermut M. V. A morphological study of the M-protein of Sendai virus. J Gen Virol. 1977 Jan;34(1):127–136. doi: 10.1099/0022-1317-34-1-127. [DOI] [PubMed] [Google Scholar]
- Hope M. J., Bruckdorfer K. R., Hart C. A., Lucy J. A. Membrane cholesterol and cell fusion of hen and guinea-pig erythrocytes. Biochem J. 1977 Aug 15;166(2):255–263. doi: 10.1042/bj1660255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howe C., Morgan C. Interactions between Sendai virus and human erythrocytes. J Virol. 1969 Jan;3(1):70–81. doi: 10.1128/jvi.3.1.70-81.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohn A. The fate of protein subunits of parainfluenza (Sendai) virus after adsorption to NIL8 hamster embryo cells. J Gen Virol. 1975 Nov;29(2):179–187. doi: 10.1099/0022-1317-29-2-179. [DOI] [PubMed] [Google Scholar]
- Kulka R. G., Cohen H. Regulation of glutamine synthetase activity of hepatoma tissue culture cells by glutamine and dexamethasone. J Biol Chem. 1973 Oct 10;248(19):6738–6743. [PubMed] [Google Scholar]
- Lawson D., Raff M. C., Gomperts B., Fewtrell C., Gilula N. B. Molecular events during membrane fusion. A study of exocytosis in rat peritoneal mast cells. J Cell Biol. 1977 Feb;72(2):242–259. doi: 10.1083/jcb.72.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lefkowitz R. J., Roth J., Pricer W., Pastan I. ACTH receptors in the adrenal: specific binding of ACTH-125I and its relation to adenyl cyclase. Proc Natl Acad Sci U S A. 1970 Mar;65(3):745–752. doi: 10.1073/pnas.65.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maeda T., Asano A., Oki K., Okada Y., Onishi S. A spin-label study on fusion of red blood cells induced by hemagglutinating virus of Japan. Biochemistry. 1975 Aug 26;14(17):3736–3741. doi: 10.1021/bi00688a003. [DOI] [PubMed] [Google Scholar]
- Maeda Y., Kim J., Koseki I., Mekada E., Shiokawa Y., Okada Y. Modification of cell membranes with viral envelopes during fusion of cells with HVJ (Sendai virus). III. Effects of mono- and di-saccharides on cell fusion and membrane movement of fused cells. Exp Cell Res. 1977 Aug;108(1):95–106. doi: 10.1016/s0014-4827(77)80014-1. [DOI] [PubMed] [Google Scholar]
- Micklem K. J., Pasternak C. A. Surface components involved in virally mediated membrane changes. Biochem J. 1977 Feb 15;162(2):405–410. doi: 10.1042/bj1620405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada Y., Murayama F. Requirement of calcium ions for the cell fusion reaction of animal cells by HVJ. Exp Cell Res. 1966 Nov-Dec;44(2):527–551. doi: 10.1016/0014-4827(66)90458-7. [DOI] [PubMed] [Google Scholar]
- Papahadjopoulos D., Vail W. J., Newton C., Nir S., Jacobson K., Poste G., Lazo R. Studies on membrane fusion. III. The role of calcium-induced phase changes. Biochim Biophys Acta. 1977 Mar 17;465(3):579–598. doi: 10.1016/0005-2736(77)90275-9. [DOI] [PubMed] [Google Scholar]
- Papahadjopoulos D., Vail W. J., Pangborn W. A., Poste G. Studies on membrane fusion. II. Induction of fusion in pure phospholipid membranes by calcium ions and other divalent metals. Biochim Biophys Acta. 1976 Oct 5;448(2):265–283. doi: 10.1016/0005-2736(76)90241-8. [DOI] [PubMed] [Google Scholar]
- Pasternak C. A., Micklem K. J. The biochemistry of virus-induced cell fusion. Changes in membrane integrity. Biochem J. 1974 Jun;140(3):405–411. doi: 10.1042/bj1400405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pinto da Silva P., Nogueira M. L. Membrane fusion during secretion. A hypothesis based on electron microscope observation of Phytophthora Palmivora zoospores during encystment. J Cell Biol. 1977 Apr;73(1):161–181. doi: 10.1083/jcb.73.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Plishker G., Gitelman H. J. Calcium transport in intact human erthrocytes. J Gen Physiol. 1976 Jul;68(1):29–41. doi: 10.1085/jgp.68.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poste G., Nicolson G. L. Calcium ionophores A23187 and X537A affect cell agglutination by lectins and capping of lymphocyte surface immunoglobulins. Biochim Biophys Acta. 1976 Feb 19;426(1):148–155. doi: 10.1016/0005-2736(76)90436-3. [DOI] [PubMed] [Google Scholar]
- Shainberg A., Yagil G., Yaffe D. Control of myogenesis in vitro by Ca 2 + concentration in nutritional medium. Exp Cell Res. 1969 Nov;58(1):163–167. doi: 10.1016/0014-4827(69)90127-x. [DOI] [PubMed] [Google Scholar]
- Yavin E., Menkes J. H. The culture of dissociated cells from rat cerebral cortex. J Cell Biol. 1973 Apr;57(1):232–237. doi: 10.1083/jcb.57.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zakai N., Kulka R. G., Loyter A. Fusion of human erythrocyte ghosts promoted by the combined action of calcium and phosphate ions. Nature. 1976 Oct 21;263(5579):696–699. doi: 10.1038/263696a0. [DOI] [PubMed] [Google Scholar]