Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Aug 1;78(2):369–378. doi: 10.1083/jcb.78.2.369

Chemical and structural changes of neurofilaments in transected rat sciatic nerve

WW Schlaepfer, S Micko
PMCID: PMC2110124  PMID: 690171

Abstract

The sequence of changes occurring in transected rat sciatic nerve was examined by electron microscopy and by sodium dodecyl sulfate (SDS) polyacrylamide disc gel electrophoresis. Representative segments of transected nerves were processed for ultrastructural examinations between 0 and 34 days after the transection of sciatic nerves immediately below the sacro-sciatic notch. The remainder of the transected nerves and the intact portions of sciatic nerves were desheathed and immediately homogenized in 1 percent SDS containing 8 M urea and 50 mM dithioerythritol. Solubilized proteins were analyzed on 12 percent gels at pH 8.3 in a discontinuous electrophoretic system. Initial changes were limited to the axons of transected nerve fibers and were characterized by the loss of microtubules and neurofilaments and their replacement by an amorphous floccular material. These changes became widespread between 24 and 48 h after transection. The disruption of neurofilaments during this interval occurred in parallel with a selective loss of 69,000, 150,000 and 200,000 mol wt proteins from nerve homogenates, thus corroborating the view that these proteins represent component subunits of mammalian neurofilaments. Furthermore, the selective changes of neurofilament proteins in transected nerves indicate their inherent lability and suggest their susceptibility to calcium-mediated alterations. Electrophoretic profiles of nerve proteins during the 4-34-day interval after nerve transection reflected the breakdown and removal of myelin, the proliferation of Schwann cells and the deposition of endoneurial collagen. A marked increase of intermediate-sized filaments within proliferating Schwann cell processes was not accompanied by the appearance of neurofilamentlike proteins in gels of nerve homogenates.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M., SANTLER J. E. An analysis of growth in nuclear population during Wallerian degeneration. J Cell Physiol. 1957 Dec;50(3):429–450. doi: 10.1002/jcp.1030500308. [DOI] [PubMed] [Google Scholar]
  2. Abercrombie M., Johnson M. L. Quantitative histology of Wallerian degeneration: I. Nuclear population in rabbit sciatic nerve. J Anat. 1946 Jan;80(Pt 1):37–50. [PMC free article] [PubMed] [Google Scholar]
  3. Adams C. W., Csejtey J., Hallpike J. F., Bayliss O. B. Histochemistry of myelin. XV. Changes in the myelin proteins of the peripheral nerve undergoing Wallerian degeneration--electrophoretic and microdensitometric observations. J Neurochem. 1972 Sep;19(9):2043–2048. doi: 10.1111/j.1471-4159.1972.tb05114.x. [DOI] [PubMed] [Google Scholar]
  4. Belin J., Smith A. D. Wallerian degeneration of rat sciatic nerve. Changes in cholesteryl ester content and fatty acid composition. J Neurochem. 1976 Oct;27(4):969–970. doi: 10.1111/j.1471-4159.1976.tb05164.x. [DOI] [PubMed] [Google Scholar]
  5. Blümcke S., Niedorf H. R. Electron microscope studies of schwann cells during the Wallerian degeneration with special reference to the cytoplasmic filaments. Acta Neuropathol. 1966 Jan 14;6(1):46–60. doi: 10.1007/BF00691081. [DOI] [PubMed] [Google Scholar]
  6. CAVANAGH J. B., WEBSTER G. R. On the changes in ali-esterase and pseudocholinesterase activity of chicken sciatic nerve during Wallerian degeneration and their correlation with cellular proliferation. Q J Exp Physiol Cogn Med Sci. 1955 Jan;40(1):12–23. doi: 10.1113/expphysiol.1955.sp001093. [DOI] [PubMed] [Google Scholar]
  7. Davison P. F., Winslow B. The protein subunit of calf brain neurofilament. J Neurobiol. 1974;5(2):119–133. doi: 10.1002/neu.480050204. [DOI] [PubMed] [Google Scholar]
  8. De Vries G. H., Eng L. F., Lewis D. L., Hadfield M. G. The protein composition of bovine myelin-free axons. Biochim Biophys Acta. 1976 Jul 19;439(1):133–145. doi: 10.1016/0005-2795(76)90169-0. [DOI] [PubMed] [Google Scholar]
  9. Donat J. R., Wiśniewski H. M. The spatio-temporal pattern of Wallerian degeneration in mammalian peripheral nerves. Brain Res. 1973 Apr 13;53(1):41–53. doi: 10.1016/0006-8993(73)90765-8. [DOI] [PubMed] [Google Scholar]
  10. GAMBLE H. J. COMPARATIVE ELECTRON-MICROSCOPIC OBSERVATIONS ON THE CONNECTIVE TISSUES OF A PERIPHERAL NERVE AND A SPINAL NERVE ROOT IN THE RAT. J Anat. 1964 Jan;98:17–26. [PMC free article] [PubMed] [Google Scholar]
  11. Hanefeld F., Wiechmann T. Histochemische Untersuchungen während der Wallerschen Degeneration bei C3H-An und C57bl-Mäusen. Experientia. 1969 Jun 15;25(6):629–629. doi: 10.1007/BF01896556. [DOI] [PubMed] [Google Scholar]
  12. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Iqbal K., Wisniewski H. M., Grundke-Iqbal I., Korthals J. K., Terry R. D. Chemical pathology of neurofibrils. Neurofibrillary tangles of Alzheimer's presenile-senile dementia. J Histochem Cytochem. 1975 Jul;23(7):563–569. doi: 10.1177/23.7.1141687. [DOI] [PubMed] [Google Scholar]
  14. JOHNSON A. C., McNABB A. R., ROSSITER R. J. Chemical studies of peripheral nerve during Wallerian degeneration; lipids. Biochem J. 1949;45(4):500–508. doi: 10.1042/bj0450500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joseph J. Changes in nuclear population following twenty-one days' degeneration in a nerve consisting of small myelinated fibres. J Anat. 1948 Jul;82(Pt 3):146–152.1. [PMC free article] [PubMed] [Google Scholar]
  16. Karnovsky M. J. The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol. 1967 Oct;35(1):213–236. doi: 10.1083/jcb.35.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. MANNELL W. A. Wallerian degeneration in the rat; a chemical study. Can J Med Sci. 1952 Jun;30(3):173–179. doi: 10.1139/cjms52-025. [DOI] [PubMed] [Google Scholar]
  20. McDermott J. R., Wiśniewski H. M. Studies on the myelin protein changes and antigenic properties of rabbit sciatic nerves undergoing Wallerian degeneration. J Neurol Sci. 1977 Aug;33(1-2):81–94. doi: 10.1016/0022-510x(77)90184-8. [DOI] [PubMed] [Google Scholar]
  21. Morgan-Hughes J. A., Engle W. K. Structural and histochemical changes in the axons following nerve crush. Arch Neurol. 1968 Dec;19(6):598–612. doi: 10.1001/archneur.1968.00480060068009. [DOI] [PubMed] [Google Scholar]
  22. Morris J. H., Hudson A. R., Weddell G. A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. I. The traumatic degeneration of myelin in the proximal stump of the divided nerve. Z Zellforsch Mikrosk Anat. 1972;124(1):76–102. [PubMed] [Google Scholar]
  23. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schlaepfer W. W., Bunge R. P. Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture. J Cell Biol. 1973 Nov;59(2 Pt 1):456–470. doi: 10.1083/jcb.59.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schlaepfer W. W. Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve. Brain Res. 1974 Apr 5;69(2):203–215. doi: 10.1016/0006-8993(74)90002-x. [DOI] [PubMed] [Google Scholar]
  26. Schlaepfer W. W. Effects of energy deprivation on Wallerian degeneration in isolated segments of rat peripheral nerve. Brain Res. 1974 Sep 20;78(1):71–81. doi: 10.1016/0006-8993(74)90354-0. [DOI] [PubMed] [Google Scholar]
  27. Schlaepfer W. W. Effects of nerve constriction on oxygenated excised segments of rat peripheral nerve. J Neuropathol Exp Neurol. 1973 Apr;32(2):203–217. doi: 10.1097/00005072-197304000-00003. [DOI] [PubMed] [Google Scholar]
  28. Schlaepfer W. W. Structural alterations of peripheral nerve induced by the calcium ionophore A23187. Brain Res. 1977 Nov 4;136(1):1–9. doi: 10.1016/0006-8993(77)90126-3. [DOI] [PubMed] [Google Scholar]
  29. Thomas G. A. Quantitative histology of Wallerian degeneration: II. Nuclear population in two nerves of different fibre spectrum. J Anat. 1948 Jul;82(Pt 3):135–145. [PMC free article] [PubMed] [Google Scholar]
  30. VIAL J. D. The early changes in the axoplasm during wallerian degeneration. J Biophys Biochem Cytol. 1958 Sep 25;4(5):551–555. doi: 10.1083/jcb.4.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WECHSLER W., HAGER H. [Electron microscopic study of Waller's degeneration of peripheral mammalian nerves]. Beitr Pathol Anat. 1962 Jul;126:352–380. [PubMed] [Google Scholar]
  32. Wood J. G., Dawson R. M. Lipid and protein changes in sciatic nerve during Wallerian degeneration. J Neurochem. 1974 May;22(5):631–635. doi: 10.1111/j.1471-4159.1974.tb04274.x. [DOI] [PubMed] [Google Scholar]
  33. Yen S. H., Dahl D., Schachner M., Shelanski M. L. Biochemistry of the filaments of brain. Proc Natl Acad Sci U S A. 1976 Feb;73(2):529–533. doi: 10.1073/pnas.73.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zelená J., Lubińska L., Gutmann E. Accumulation of organelles at the ends of interrupted axons. Z Zellforsch Mikrosk Anat. 1968;91(2):200–219. doi: 10.1007/BF00364311. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES