Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Aug 1;78(2):554–564. doi: 10.1083/jcb.78.2.554

Loss and reappearance of gap junctions in regenerating liver

PMCID: PMC2110135  PMID: 690179

Abstract

Changes in intercellular junctional morphology associated with rat liver regeneration were examined in a freeze-fracture study. After a two-thirds partial hepatectomy, both gap junctions and zonulae occludentes were drastically altered. Between 0 and 20 h after partial hepatectomy, the junctions appeared virtually unchanged. 28 h after partial hepatectomy, however, the large gap junctions usually located close to the bile canaliculi and the small gap junctions enmeshed within the strands of the zonulae occudentes completely disappeared. Although the zonulae occludentes bordering the bile canaliculi apparently remained intact, numerous strands could now be found oriented perpendicular to the canaliculi. In some instances, the membrane outside the canaliculi was extensively filled with isolated junctional strands, often forming very complex configurations. About 40 h after partial hepatectomy, very many small gap junctions reappeared in close association with the zonulae occludentes. Subsequently, gap junctions increased in size and decreased in number until about 48 h after partial hepatectomy when gap junctions were indistinguishable in size and number from those of control animals. The zonulae occludentes were again predominantly located around the canalicular margins. These studies provide further evidence for the growth of gap junctions by the accretion of particles and of small gap junctions to form large maculae.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Anderson E. The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions. J Cell Biol. 1974 Oct;63(1):234–250. doi: 10.1083/jcb.63.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albertini D. F., Fawcett D. W., Olds P. J. Morphological variations in gap junctions of ovarian granulosa cells. Tissue Cell. 1975;7(2):389–405. doi: 10.1016/0040-8166(75)90014-2. [DOI] [PubMed] [Google Scholar]
  3. Bjersing L., Cajander S. Ovulation and the mechanism of follicle rupture. IV. Ultrastructure of membrana granulosa of rabbit graafian follicles prior to induced ovulation. Cell Tissue Res. 1974;153(1):1–14. doi: 10.1007/BF00225441. [DOI] [PubMed] [Google Scholar]
  4. Decker R. S., Friend D. S. Assembly of gap junctions during amphibian neurulation. J Cell Biol. 1974 Jul;62(1):32–47. doi: 10.1083/jcb.62.1.32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Decker R. S. Hormonal regulation of gap junction differentiation. J Cell Biol. 1976 Jun;69(3):669–685. doi: 10.1083/jcb.69.3.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elias P. M., Friend D. S. Vitamin-A-induced mucous metaplasia. An in vitro system for modulating tight and gap junction differentiation. J Cell Biol. 1976 Feb;68(2):173–188. doi: 10.1083/jcb.68.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Epstein M. L., Sheridan J. D., Johnson R. G. Formation of low-resistance junctions in vitro in the absence of protein synthesis and ATP production. Exp Cell Res. 1977 Jan;104(1):25–30. doi: 10.1016/0014-4827(77)90064-7. [DOI] [PubMed] [Google Scholar]
  8. Gilula N. B., Reeves O. R., Steinbach A. Metabolic coupling, ionic coupling and cell contacts. Nature. 1972 Feb 4;235(5336):262–265. doi: 10.1038/235262a0. [DOI] [PubMed] [Google Scholar]
  9. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heath T., Wissig S. L. Fine structure of the surface of mouse hepatic cells. Am J Anat. 1966 Jul;119(1):97–127. doi: 10.1002/aja.1001190107. [DOI] [PubMed] [Google Scholar]
  11. Johnson R., Hammer M., Sheridan J., Revel J. P. Gap junction formation between reaggregated Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4536–4540. doi: 10.1073/pnas.71.11.4536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Klinge O. Altersabhängige Beeinträchtigung der Zellvermehrung in der regenerierenden Rattenleber. Virchows Arch B Cell Pathol. 1968;1(4):342–345. [PubMed] [Google Scholar]
  13. Loewenstein W. R., Penn R. D. Intercellular communication and tissue growth. II. Tissue regeneration. J Cell Biol. 1967 May;33(2):235–242. doi: 10.1083/jcb.33.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Loewenstein W. R. Permeability of membrane junctions. Ann N Y Acad Sci. 1966 Jul 14;137(2):441–472. doi: 10.1111/j.1749-6632.1966.tb50175.x. [DOI] [PubMed] [Google Scholar]
  15. McNutt N. S., Weinstein R. S. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol. 1970 Dec;47(3):666–688. doi: 10.1083/jcb.47.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Merk F. B., McNutt N. S. Nexus junctions between dividing and interphase granulosa cells of the rat ovary. J Cell Biol. 1972 Nov;55(2):511–515. doi: 10.1083/jcb.55.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. O'Lague P., Dalen H., Rubin H., Tobias C. Electrical coupling: low resistance junctions between mitotic and interphase fibroblasts in tissue culture. Science. 1970 Oct 23;170(3956):464–466. doi: 10.1126/science.170.3956.464. [DOI] [PubMed] [Google Scholar]
  18. Revel J. P., Yee A. G., Hudspeth A. J. Gap junctions between electrotonically coupled cells in tissue culture and in brown fat. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2924–2927. doi: 10.1073/pnas.68.12.2924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES