Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Aug 1;78(2):338–348. doi: 10.1083/jcb.78.2.338

Formation of gap junctions by treatment in vitro with potassium conductance blockers

PMCID: PMC2110136  PMID: 690170

Abstract

Gap junctions were regularly seen in thin sections of canine tracheal smooth muscle incubated in vitro. Their number was increased in tissued exposed in vitro to either of two potassium conductance blockers, tetraethylammonium (TEA) and 4-aminopyridine (4-AP), and at the same time the muscles became mechanically active, with spontaneous contractions. The presence of gap junctions in this smooth muscle may provide one basis for cell-to-cell coupling, and their increase after TEA- and 4-AP-treatment could account for a decreased junctional resistance between cells, contributing to a longer space constant. However, an increase in gap junctions was not sufficient to change the behavior of trachealis smooth muscle from multiunit to single-unit type. Gap junctions in increased numbers persisted after washout of 4- AP, which caused inhibition of spontaneous contractions, and despite inhibition of the contractile effects of 4-AP by atropine. The rapid induction of gap junction formation was not dependent on de novo synthesis of protein. The fact that the number of gap junctions can be increased by chemical agents has important implications for control of their formation and provides a tool for analysis fo their role in cell- to-cell coupling.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe Y., Tomita T. Cable properties of smooth muscle. J Physiol. 1968 May;196(1):87–100. doi: 10.1113/jphysiol.1968.sp008496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassingthwaighte J. B., Fry C. H., McGuigan J. A. Relationship between internal calcium and outward current in mammalian ventricular muscle; a mechanism for the control of the action potential duration? J Physiol. 1976 Oct;262(1):15–37. doi: 10.1113/jphysiol.1976.sp011583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Daniel E. E., Daniel V. P., Duchon G., Garfield R. E., Nichols M., Malhotra S. K., Oki M. Is the nexus necessary for cell-to-cell coupling of smooth muscle? J Membr Biol. 1976 Aug 26;28(2-3):207–239. doi: 10.1007/BF01869698. [DOI] [PubMed] [Google Scholar]
  4. Fry G. N., Devine C. E., Burnstock G. Freeze-fracture studies of nexuses between smooth muscle cells. Close relationship to sarcoplasmic reticulum. J Cell Biol. 1977 Jan;72(1):26–34. doi: 10.1083/jcb.72.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gabella G. Structural changes in smooth muscle cells during isotonic contraction. Cell Tissue Res. 1976 Jul 26;170(2):187–201. doi: 10.1007/BF00224298. [DOI] [PubMed] [Google Scholar]
  6. Garfield R. E., Sims S., Daniel E. E. Gap junctions: their presence and necessity in myometrium during parturition. Science. 1977 Dec 2;198(4320):958–960. doi: 10.1126/science.929182. [DOI] [PubMed] [Google Scholar]
  7. Harvey A. L., Marshall I. G. The facilitatory actions of aminopyridines and tetraethylammonium on neuromuscular transmission and muscle contractility in avian muscle. Naunyn Schmiedebergs Arch Pharmacol. 1977 Aug;299(1):53–60. doi: 10.1007/BF00508637. [DOI] [PubMed] [Google Scholar]
  8. Kroeger E. A., Stephens N. L. Effect of tetraethylammonium on tonic airway smooth muscle: initiation of phasic electrical activity. Am J Physiol. 1975 Feb;228(2):633–636. doi: 10.1152/ajplegacy.1975.228.2.633. [DOI] [PubMed] [Google Scholar]
  9. Kuriyama H., Suzuki H. Changes in electrical properties of rat myometrium during gestation and following hormonal treatments. J Physiol. 1976 Sep;260(2):315–333. doi: 10.1113/jphysiol.1976.sp011517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. McNutt N. S., Weinstein R. S. Membrane ultrastructure at mammalian intercellular junctions. Prog Biophys Mol Biol. 1973;26:45–101. doi: 10.1016/0079-6107(73)90017-5. [DOI] [PubMed] [Google Scholar]
  12. Suzuki H., Morita K., Kuriyama H. Innervation and properties of the smooth muscle of the dog trachea. Jpn J Physiol. 1976;26(3):303–320. doi: 10.2170/jjphysiol.26.303. [DOI] [PubMed] [Google Scholar]
  13. Yeh J. Z., Oxford G. S., Wu C. H., Narahashi T. Dynamics of aminopyridine block of potassium channels in squid axon membrane. J Gen Physiol. 1976 Nov;68(5):519–535. doi: 10.1085/jgp.68.5.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yeh J. Z., Oxford G. S., Wu C. H., Narahashi T. Interactions of aminopyridines with potassium channels of squid axon membranes. Biophys J. 1976 Jan;16(1):77–81. doi: 10.1016/S0006-3495(76)85663-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES