Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jun 1;77(3):702–713. doi: 10.1083/jcb.77.3.702

Localization of the guinea pig eosinophil major basic protein to the core of the granule

PMCID: PMC2110139  PMID: 681455

Abstract

The localization of the guinea pig eosinophil major basic protein (MBP) within the cell was investigated by the use of immunoelectron microscopy and by isolation of the granule crystalloids. First, by immunoperoxidase electron microscopy, we found that the MBP of eosinophil granules is contained within the crystalloid core of the granule. Specific staining of cores was present when rabbit antiserum to MBP was used as the first stage antibody in a double antibody staining procedure, whereas staining was not seen when normal rabbit serum was used as the first stage antibody. Second, crystalloids were isolated from eosinophil granules by disruption in 0.1% Triton X-100 and centrifugation through a cushion of 50% sucrose. Highly purified core preparations yielded essentially a single band when analyzed by electrophoresis on polyacrylamide gels containing 1% sodium dodecyl sulfate (SDS). The E1%1cm of the core protein was 26.8 +/- 1.0 (X +/- SEM); the E1%1cm for the MBP was 26.3. The core protein could not be distinguished from the MBP by radioimmunoassay (RIA) and essentially all of the protein in the core preparations could be accounted for as MBP. The results indicate that the MBP is contained in the core of the guinea pig eosinophil granule and that it is probably the only protein present in the core.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARCHER G. T., HIRSCH J. G. ISOLATION OF GRANULES FROM EOSINOPHIL LEUCOCYTES AND STUDY OF THEIR ENZYME CONTENT. J Exp Med. 1963 Aug 1;118:277–286. doi: 10.1084/jem.118.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avrameas S. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry. 1969 Jan;6(1):43–52. doi: 10.1016/0019-2791(69)90177-3. [DOI] [PubMed] [Google Scholar]
  3. Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
  4. Bainton D. F., Farquhar M. G. Segregation and packaging of granule enzymes in eosinophilic leukocytes. J Cell Biol. 1970 Apr;45(1):54–73. doi: 10.1083/jcb.45.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cotran R. S., Litt M. The entry of granule-associated peroxidase into the phagocytic vacuoles of eosinophils. J Exp Med. 1969 Jun 1;129(6):1291–1306. doi: 10.1084/jem.129.6.1291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Enomoto T., Kitani T. [Electron microscopic studies on peroxidase and acid phosphatase reaction in human leukocytes (in normal and leukemic cells and on phagocytosis)]. Nihon Ketsueki Gakkai Zasshi. 1966 Aug;29(4):554–570. [PubMed] [Google Scholar]
  7. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  8. Gessner T. P., Himmelhoch R., Shelton E. Partial characterization of the protein components of eosinophil granules isolated from guinea pig exudates. Arch Biochem Biophys. 1973 Jun;156(2):383–389. doi: 10.1016/0003-9861(73)90286-5. [DOI] [PubMed] [Google Scholar]
  9. Gleich G. J., Loegering D. A., Kueppers F., Bajaj S. P., Mann K. G. Physiochemical and biological properties of the major basic protein from guinea pig eosinophil granules. J Exp Med. 1974 Aug 1;140(2):313–332. doi: 10.1084/jem.140.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gleich G. J., Loegering D. A., Maldonado J. E. Identification of a major basic protein in guinea pig eosinophil granules. J Exp Med. 1973 Jun 1;137(6):1459–1471. doi: 10.1084/jem.137.6.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gleich G. J., Loegering D. A., Mann K. G., Maldonado J. E. Comparative properties of the Charcot-Leyden crystal protein and the major basic protein from human eosinophils. J Clin Invest. 1976 Mar;57(3):633–640. doi: 10.1172/JCI108319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gleich G. J., Loegering D. Selective stimulation and purification of eosinophils and neutrophils from guinea pig peritoneal fluids. J Lab Clin Med. 1973 Sep;82(3):522–528. [PubMed] [Google Scholar]
  13. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  14. Kraehenbuhl J. P., Jamieson J. D. Localization of intracellular antigens by immunoelectron microscopy. Int Rev Exp Pathol. 1974;13(0):1–53. [PubMed] [Google Scholar]
  15. Lewis D. M., Loegering D. A., Gleich G. J. Antiserum to the major basic protein of guinea pig eosinophil granules. Immunochemistry. 1976 Sep;13(9):743–746. doi: 10.1016/0019-2791(76)90194-4. [DOI] [PubMed] [Google Scholar]
  16. Lewis D. M., Loegering D. A., Gleich G. J. Isolation and partial characterization of a major basic protein from rat eosinophil granules. Proc Soc Exp Biol Med. 1976 Sep;152(4):512–515. doi: 10.3181/00379727-152-39429. [DOI] [PubMed] [Google Scholar]
  17. Macrae E. K., Spitznagel J. K. Ultrastructural localization of cationic proteins in cytoplasmic granules of chicken and rabbit polymorphonuclear leukocytes. J Cell Sci. 1975 Jan;17(1):79–94. doi: 10.1242/jcs.17.1.79. [DOI] [PubMed] [Google Scholar]
  18. McConahey P. J., Dixon F. J. A method of trace iodination of proteins for immunologic studies. Int Arch Allergy Appl Immunol. 1966;29(2):185–189. doi: 10.1159/000229699. [DOI] [PubMed] [Google Scholar]
  19. Okun M. R., Donnellan B., Pearson S. H., Edelstein L. E. Melanin: a normal component of human eosinophils. Lab Invest. 1974 Jun;30(6):681–685. [PubMed] [Google Scholar]
  20. PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Parmley R. T., Spicer S. S. Cytochemical and ultrastructural identification of a small type granule in human late eosinophils. Lab Invest. 1974 May;30(5):557–567. [PubMed] [Google Scholar]
  22. Seeman P. M., Palade G. E. Acid phosphatase localization in rabbit eosinophils. J Cell Biol. 1967 Sep;34(3):745–756. doi: 10.1083/jcb.34.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. WELSH R. A. The genesis of the Charcot-Leyden crystal in the eosinophilic leukocyte of man. Am J Pathol. 1959 Nov-Dec;35:1091–1103. [PMC free article] [PubMed] [Google Scholar]
  24. Yunginger J. W., Gleich G. J. Comparison of the protein-binding capacities of cyanogen bromide-activated polysaccharides. J Allergy Clin Immunol. 1972 Aug;50(2):109–116. doi: 10.1016/0091-6749(72)90006-1. [DOI] [PubMed] [Google Scholar]
  25. el-Hashimi W. Charcot-Leyden crystals. Formation from primate and lack of formation from nonprimate eosinophils. Am J Pathol. 1971 Nov;65(2):311–324. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES