Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jun 1;77(3):735–742. doi: 10.1083/jcb.77.3.735

Dissociation between rate of hepatic lipoprotein secretion and hepatocyte microtubule content

EP Reaven, GM Reaven
PMCID: PMC2110140  PMID: 210192

Abstract

The fact that colchicines inhibits hepatic secretion of very low density lipoprotein (VLDL) particles has been interpreted to mean that microtubules are involved in hepatic VLDL secretion. To further define this relationship, we have attempted to see if changes in hepatic VLDL secretion are associated with changes in hepatocyte microtubule or tubulin content. Accordingly, hepatic secretion of VLDL was increased in rats, and the hepatocyte content of both microtubules (using quantitative morphometric methods) and tubulin (using a time-decay colchicine binding assay) was determined. In acute experiments, VLDL secretion was increased by perfusion of isolated rat livers for 2 h with varying concentrations of free fatty acids (FFA). Results indicate that hepatic VLDL triglyceride (TG) secretion at perfusate FFA levels of 0.7 μEq/ml is threefold greater (P < 0.01) than when livers are perfused without added FFA. However, no differences are observed in the content of microtubules in these livers: specifically, microtubules occupy 0.029 percent of hepatocyte cytoplasm in livers perfused without FFA and 0.030 percent of cytoplasm in livers perfused with FFA. In chronic experiments, rats were fed for 1 wk with either standard rat chow or a hyperlipidemic (sucrose/lard) diet. With the experimental diet, plasma triglyceride levels increase threefold over controls, and liver VLDL-TG production, as determined by [(3)H]glycerol turnover studies, is 55 percent greater (P < 0.01) than controls. However, microtubules occupy 0.027 percent of the cytoplasm of hepatocyte cytoplasm whether rats are on standard or hyperlipidemic diets. Furthermore, the tubulin content of isolated hepatocytes does change, and represents 1 percent of hepatocyte soluble protein, irrespective of diet. These results suggest that increases in hepatic VLDL secretion can occur without any demonstrable change in hepatocyte assembled microtubule or tubulin content, and raise questions as to the role played by microtubules in hepatic VLDL secretion.

Full Text

The Full Text of this article is available as a PDF (593.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bar-On H., Roheim P. S., Eder H. A. Hyperlipoproteinemia in streptozotocin-treated rats. Diabetes. 1976 Jun;25(6):509–515. doi: 10.2337/diab.25.6.509. [DOI] [PubMed] [Google Scholar]
  2. Claude A. Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis in the hepatic cell. I. Elaboration of elements of the Golgi complex. J Cell Biol. 1970 Dec;47(3):745–766. doi: 10.1083/jcb.47.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edwards P. A. The influence of catecholamines and cyclic AMP on 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and lipid biosynthesis in isolated rat hepatocytes. Arch Biochem Biophys. 1975 Sep;170(1):188–203. doi: 10.1016/0003-9861(75)90110-1. [DOI] [PubMed] [Google Scholar]
  4. Gregg R., Mondon C. E., Reaven E. P., Reaven G. M. Effect of acute uremia on triglyceride kinetics in the rat. Metabolism. 1976 Dec;25(12):1557–1565. doi: 10.1016/0026-0495(76)90108-6. [DOI] [PubMed] [Google Scholar]
  5. Hamilton R. L., Regen D. M., Gray M. E., LeQuire V. S. Lipid transport in liver. I. Electron microscopic identification of very low density lipoproteins in perfused rat liver. Lab Invest. 1967 Feb;16(2):305–319. [PubMed] [Google Scholar]
  6. Jones A. L., Ruderman N. B., Herrera M. G. Electron microscopic and biochemical study of lipoprotein synthesis in the isolated perfused rat liver. J Lipid Res. 1967 Sep;8(5):429–446. [PubMed] [Google Scholar]
  7. Le Marchand Y., Singh A., Assimacopoulos-Jeannet F., Orci L., Rouiller C., Jeanrenaud B. A role for the microtubular system in the release of very low density lipoproteins by perfused mouse livers. J Biol Chem. 1973 Oct 10;248(19):6862–6870. [PubMed] [Google Scholar]
  8. Mondon C. E., Burton S. D. Factors modifying carbohydrate metabolism and effect of insulin in perfused rat liver. Am J Physiol. 1971 Mar;220(3):724–734. doi: 10.1152/ajplegacy.1971.220.3.724. [DOI] [PubMed] [Google Scholar]
  9. Noma A., Okabe H., Kita M. A new colorimetric micro-determination of free fatty acids in serum. Clin Chim Acta. 1973 Feb 12;43(3):317–320. doi: 10.1016/0009-8981(73)90468-3. [DOI] [PubMed] [Google Scholar]
  10. Orci L., Le Marchand Y., Singh A., Assimacopoulos-Jeannet F., Rouiller C., Jeanrenaud B. Letter: Role of microtubules in lipoprotein secretion by the liver. Nature. 1973 Jul 6;244(5410):30–32. doi: 10.1038/244030a0. [DOI] [PubMed] [Google Scholar]
  11. Reaven E. P., Cheng Y., Miller M. D. Quantitative analysis of tubulin and microtubule compartments in isolated rat hepatocytes. J Cell Biol. 1977 Dec;75(3):731–742. doi: 10.1083/jcb.75.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Reaven E. P., Reaven G. M. A quantitative ultrastructural study of microtubule content and secretory granule accumulation in parathyroid glands of phosphate- and colchicine-treated rats. J Clin Invest. 1975 Jul;56(1):49–55. doi: 10.1172/JCI108078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reaven E. P., Reaven G. M. Distribution and content of microtubules in relation to the transport of lipid. An ultrastructural quantitative study of the absorptive cell of the small intestine. J Cell Biol. 1977 Nov;75(2 Pt 1):559–572. doi: 10.1083/jcb.75.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Singh A., Le Marchand Y., Orci L., Jeanrenaud B. Colchicine administration to mice: a metabolic and ultrastructural study. Eur J Clin Invest. 1975 Nov 21;5(6):495–505. doi: 10.1111/j.1365-2362.1975.tb00482.x. [DOI] [PubMed] [Google Scholar]
  15. Stadler J., Franke W. W. Characterization of the colchicine binding of membrane fractions from rat and mouse liver. J Cell Biol. 1974 Jan;60(1):297–303. doi: 10.1083/jcb.60.1.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stein O., Stein Y. Colchicine-induced inhibition of very low density lipoprotein release by rat liver in vivo. Biochim Biophys Acta. 1973 Apr 13;306(1):142–147. doi: 10.1016/0005-2760(73)90219-1. [DOI] [PubMed] [Google Scholar]
  17. Stein O., Stein Y. Lipid synthesis, intracellular transport, storage, and secretion. I. Electron microscopic radioautographic study of liver after injection of tritiated palmitate or glycerol in fasted and ethanol-treated rats. J Cell Biol. 1967 May;33(2):319–339. doi: 10.1083/jcb.33.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Taylor A., Maffly R., Wilson L., Reaven E. Evidence for involvement of microtubules in the action of vasopressin. Ann N Y Acad Sci. 1975 Jun 30;253:723–737. doi: 10.1111/j.1749-6632.1975.tb19241.x. [DOI] [PubMed] [Google Scholar]
  19. Waddell M., Fallon H. J. The effect of high-carbohydrate diets on liver triglyceride formation in the rat. J Clin Invest. 1973 Nov;52(11):2725–2731. doi: 10.1172/JCI107467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weibel E. R. Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol. 1969;26:235–302. doi: 10.1016/s0074-7696(08)61637-x. [DOI] [PubMed] [Google Scholar]
  21. Wilson L., Bamburg J. R., Mizel S. B., Grisham L. M., Creswell K. M. Interaction of drugs with microtubule proteins. Fed Proc. 1974 Feb;33(2):158–166. [PubMed] [Google Scholar]
  22. Woodside W. F., Heimberg M. Hepatic metabolism of free fatty acids in experimental diabetes. Isr J Med Sci. 1972 Mar;8(3):309–316. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES