Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jun 1;77(3):789–804. doi: 10.1083/jcb.77.3.789

Analogous ultrastructure and surface properties during capping and phagocytosis in leukocytes

PMCID: PMC2110144  PMID: 567226

Abstract

Ultrastructural analyses have revealed striking similarities between Concanavalin A capping and phagocytosis in leukocytes. Both processes involve extensive membrane movement to form a protuberance or pseudopods; a dense network of microfilaments is recruited into both the protuberance and the pseudopods; microtubules are disassembled either generally (capping) or in the local region of the pseudopods (phagocytosis); and cells generally depleted of microtubules by colchicine show polarized phagocytosis via the microfilament-rich protuberance rather than uniform peripheral ingestion of particles via individual pseudopods. Cap formation can thus be viewed as occurring as an exaggeration of the same ultrastructural events that mediate phagocytosis. Similar changes in cell surface topography also accompany capping and phagocytosis. Thus, in nonfixed cells, Concanavalin A- receptor complexes aggregate into the region of the protuberance in colchicine-treated leukocytes (conventional capping) or into the region of pseudopod formation in phagocytizing leukocytes. In the latter case, the movement of lectin-receptor complexes occurs from membrane overlying peripheral microtubules into filament-rich pseudopods that exclude microtubules. These data provide evidence against a role for microtubules as "anchors" for lectin receptors. Rather, they indicate a preferential movement of cell surface Concanavalin A-receptor complexes towards areas of extensive (the protuberance) or localized (pseudopods) microfilament concentration. In conventional capping, Concanavalin A must be added to the colchicine-treated cells before fixation in order to demonstrate movement of receptors from a diffuse distribution into the protuberance. However, Convanavalin A receptors are enriched in the membrane associated with phagocytic particles as compared to the remaining membrane. This particle-induced redistribution of receptors is particularly prominent in colchicine-treated cells that phagocytize and are then fixed and Concanavalin A labeled; both lectin receptors and beads are concentrated over the protuberance. Thus, the final analogy between conventionally capped and phagocytic cells is that in both cases the properties of the plasma membrane in regions of microfilament concentration are modified by Concanavalin A itself (capping) or by the phagocytized particle, to limit locally the diffusion of Concanavalin A receptors.

Full Text

The Full Text of this article is available as a PDF (5.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Berlin R. D., Oliver J. M. The mechanism of concanavalin A cap formation in leukocytes. J Cell Sci. 1977 Aug;26:57–75. doi: 10.1242/jcs.26.1.57. [DOI] [PubMed] [Google Scholar]
  2. Allison A. C., Davies P. Mechanisms of endocytosis and exocytosis. Symp Soc Exp Biol. 1974;(28):419–446. [PubMed] [Google Scholar]
  3. Becker E. L. The relationship of the chemotactic behavior of the complement-derived factors, C3a, C5a, and C567, and a bacterial chemotactic factor to their ability to activate the proesterase 1 of rabbit polymorphonuclear leukocytes. J Exp Med. 1972 Feb 1;135(2):376–387. doi: 10.1084/jem.135.2.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berlin R. D., Fera J. P. Changes in membrane microviscosity associated with phagocytosis: effects of colchicine. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1072–1076. doi: 10.1073/pnas.74.3.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burchill B. R., Oliver J. M., Pearson C. B., Leinbach E. D., Berlin R. D. Microtubule dynamics and glutathione metabolism in phagocytizing human polymorphonuclear leukocytes. J Cell Biol. 1978 Feb;76(2):439–447. doi: 10.1083/jcb.76.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fagraeus A., Lidman K., Biberfeld G. Reaction of human smooth muscle antibodies with human blood lymphocytes and lymphoid cell lines. Nature. 1974 Nov 15;252(5480):246–247. doi: 10.1038/252246a0. [DOI] [PubMed] [Google Scholar]
  8. Fagraeus A., Nilsson K., Lidman K., Norberg R. Reactivity of smooth-muscle antibodies, surface ultrastructure, and mobility in cells of human hematopoietic cell lines. J Natl Cancer Inst. 1975 Oct;55(4):783–789. doi: 10.1093/jnci/55.4.783. [DOI] [PubMed] [Google Scholar]
  9. Fernandez S. M., Berlin R. D. Cell surface distribution of lectin receptors determined by resonance energy transfer. Nature. 1976 Dec 2;264(5585):411–415. doi: 10.1038/264411a0. [DOI] [PubMed] [Google Scholar]
  10. Griffin F. M., Jr, Griffin J. A., Leider J. E., Silverstein S. C. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med. 1975 Nov 1;142(5):1263–1282. doi: 10.1084/jem.142.5.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffstein S., Goldstein I. M., Weissmann G. Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A reevaluation. J Cell Biol. 1977 Apr;73(1):242–256. doi: 10.1083/jcb.73.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffstein S., Soberman R., Goldstein I., Weissmann G. Concanavalin A induces microtubule assembly and specific granule discharge in human polymorphonuclear leukocytes. J Cell Biol. 1976 Mar;68(3):781–787. doi: 10.1083/jcb.68.3.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Korn E. D., Bowers B., Batzri S., Simmons S. R., Victoria E. J. Endycytosis and exocytosis: role of microfilaments and involvement of phospholipids in membrane fusion. J Supramol Struct. 1974;2(5-6):517–528. doi: 10.1002/jss.400020502. [DOI] [PubMed] [Google Scholar]
  14. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Malawista S. E., Bodel P. T. The dissociation by colchicine of phagocytosis from increased oxygen consumption in human leukocytes. J Clin Invest. 1967 May;46(5):786–796. doi: 10.1172/JCI105579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oliver J. M., Albertini D. F., Berlin R. D. Effects of glutathione-oxidizing agents on microtubule assembly and microtubule-dependent surface properties of human neutrophils. J Cell Biol. 1976 Dec;71(3):921–932. doi: 10.1083/jcb.71.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Oliver J. M. Concanavalin A cap formation on human polymorphonuclear leukocytes induced by R17934, a new antitumor drug that interferes with microtubule assembly. J Reticuloendothel Soc. 1976 Jun;19(6):389–395. [PubMed] [Google Scholar]
  18. Oliver J. M., Lalchandani R., Becker E. L. Actin redistribution during Concanavalin A cap formation in rabbit neutrophils. J Reticuloendothel Soc. 1977 May;21(5):359–364. [PubMed] [Google Scholar]
  19. Oliver J. M., Ukena T. E., Berlin R. D. Effects of phagocytosis and colchicine on the distribution of lectin-binding sites on cell surfaces. Proc Natl Acad Sci U S A. 1974 Feb;71(2):394–398. doi: 10.1073/pnas.71.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pesanti E. L., Axline S. G. Colchicine effects on lysosomal enzyme induction and intracellular degradation in the cultivated macrophage. J Exp Med. 1975 May 1;141(5):1030–1046. doi: 10.1084/jem.141.5.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Reaven E. P., Axline S. G. Subplasmalemmal microfilaments and microtubules in resting and phagocytizing cultivated macrophages. J Cell Biol. 1973 Oct;59(1):12–27. doi: 10.1083/jcb.59.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schreiner G. F., Fujiwara K., Pollard T. D., Unanue E. R. Redistribution of myosin accompanying capping of surface Ig. J Exp Med. 1977 May 1;145(5):1393–1398. doi: 10.1084/jem.145.5.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stossel T. P., Hartwig J. H. Interactions of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages. II. Role in cytoplasmic movement and phagocytosis. J Cell Biol. 1976 Mar;68(3):602–619. doi: 10.1083/jcb.68.3.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stossel T. P. Quantitative studies of phagocytosis. Kinetic effects of cations and heat-labile opsonin. J Cell Biol. 1973 Aug;58(2):346–356. doi: 10.1083/jcb.58.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tsan M. F., Berlin R. D. Effect of phagocytosis on membrane transport of nonelectrolytes. J Exp Med. 1971 Oct 1;134(4):1016–1035. doi: 10.1084/jem.134.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Yahara I., Edelman G. M. Modulation of lymphocyte receptor mobility by locally bound concanavalin A. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1579–1583. doi: 10.1073/pnas.72.4.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Zurier R. B., Weissmann G., Hoffstein S., Kammerman S., Tai H. H. Mechanisms of lysosomal enzyme release from human leukocytes. II. Effects of cAMP and cGMP, autonomic agonists, and agents which affect microtubule function. J Clin Invest. 1974 Jan;53(1):297–309. doi: 10.1172/JCI107550. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES