Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jun 1;77(3):827–836. doi: 10.1083/jcb.77.3.827

Myosins of secretory tissues

PMCID: PMC2110153  PMID: 150427

Abstract

Myosin has been purified from the principal pancreatic islet of catfish, hog salivary gland, and hog pituitary. Use of the protease inhibitor Trasylol (FBA Pharmaceuticals, New York) was essential in the isolation of pituitary myosin. Secretory tissue myosins were very similar to smooth muscle myosin, having a heavy chain of 200,000 daltons and light chains of 14,000 and 19,000 daltons. Salivary gland myosin cross-reacted with antibodies directed toward both smooth muscle myosin and fibroblast myosin, but not with antiskeletal muscel myosin serum. The specific myosin ATPase activity measured in 0.6 M KCl was present. Tissues associated with secretion of hormone granules contained substantial amounts of this ATPase, rat pancreatic islets having 4.5 times that of rat liver. Activation of low ionic strength myosin ATPase by actin could not be demonstrated despite adequate binding of the myosin to muscle actin and elution by MgATP. The myosins were located primarily in the cytoplasm as determined by cell fractionation and were quite soluble in buffers of low ionic strength.

Full Text

The Full Text of this article is available as a PDF (909.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Conti M. A., Johnson G. S., Pastan I., Pollard T. D. Isolation and characterization of myosin from cloned mouse fibroblasts. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3693–3697. doi: 10.1073/pnas.69.12.3693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Babad H., Ben-Zvi R., Bdolah A., Schramm M. The mechanism of enzyme secretion by the cell. 4. Effects of inducers, substrates and inhibitors on amylase secretion by rat parotid slices. Eur J Biochem. 1967 Mar;1(1):96–101. doi: 10.1111/j.1432-1033.1967.tb00049.x. [DOI] [PubMed] [Google Scholar]
  3. Berl S., Puszkin S., Nicklas W. J. Actomyosin-like protein in brain. Science. 1973 Feb 2;179(4072):441–446. doi: 10.1126/science.179.4072.441. [DOI] [PubMed] [Google Scholar]
  4. Booyse F. M., Sternberger L. A., Zschocke D., Rafelson M. E., Jr Ultrastructural localization of contractile protein (thrombosthenin) in human platelets using an unlabeled antibody-peroxidase staining technique. J Histochem Cytochem. 1971 Sep;19(9):540–550. doi: 10.1177/19.9.540. [DOI] [PubMed] [Google Scholar]
  5. Burridge K., Bray D. Purification and structural analysis of myosins from brain and other non-muscle tissues. J Mol Biol. 1975 Nov 25;99(1):1–14. doi: 10.1016/s0022-2836(75)80154-9. [DOI] [PubMed] [Google Scholar]
  6. Bárány M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol. 1967 Jul;50(6 Suppl):197–218. doi: 10.1085/jgp.50.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellis S., Nuenke J. M., Grindeland R. E. Identity between the growth hormone degrading activity of the pituitary gland and plasmin. Endocrinology. 1968 Nov;83(5):1029–1042. doi: 10.1210/endo-83-5-1029. [DOI] [PubMed] [Google Scholar]
  8. Gabbiani G., Malaisse-Lagae F., Blondel B., Orci L. Actin in pancreatic islet cells. Endocrinology. 1974 Dec;95(6):1630–1635. doi: 10.1210/endo-95-6-1630. [DOI] [PubMed] [Google Scholar]
  9. Górecka A., Aksoy M. O., Hartshorne D. J. The effect of phosphorylation of gizzard myosin on actin activation. Biochem Biophys Res Commun. 1976 Jul 12;71(1):325–331. doi: 10.1016/0006-291x(76)90286-2. [DOI] [PubMed] [Google Scholar]
  10. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Lacy P. E., Howell S. L., Young D. A., Fink C. J. New hypothesis of insulin secretion. Nature. 1968 Sep 14;219(5159):1177–1179. doi: 10.1038/2191177a0. [DOI] [PubMed] [Google Scholar]
  13. Malaisse W. J., Malaisse-Lagae F., Van Obberghen E., Somers G., Devis G., Ravazzola M., Orci L. Role of microtubules in the phasic pattern of insulin release. Ann N Y Acad Sci. 1975 Jun 30;253:630–652. doi: 10.1111/j.1749-6632.1975.tb19234.x. [DOI] [PubMed] [Google Scholar]
  14. Orci L., Gabbay K. H., Malaisse W. J. Pancreatic beta-cell web: its possible role in insulin secretion. Science. 1972 Mar 10;175(4026):1128–1130. doi: 10.1126/science.175.4026.1128. [DOI] [PubMed] [Google Scholar]
  15. Ostlund R. E., Pastan I., Adelstein R. S. Myosin in cultured fibroblasts. J Biol Chem. 1974 Jun 25;249(12):3903–3907. [PubMed] [Google Scholar]
  16. Ostlund R. E., Pastan I. The purification and quantitation of myosin from cultured cells. Biochim Biophys Acta. 1976 Nov 26;453(1):37–47. doi: 10.1016/0005-2795(76)90248-8. [DOI] [PubMed] [Google Scholar]
  17. Perley M. J., Kipnis D. M. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest. 1967 Dec;46(12):1954–1962. doi: 10.1172/JCI105685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pipeleers D. G., Pipeleers-Marichal M. A., Kipnis D. M. Microtubule assembly and the intracellular transport of secretory granules in pancreatic islets. Science. 1976 Jan 9;191(4222):88–90. doi: 10.1126/science.1108194. [DOI] [PubMed] [Google Scholar]
  19. Poirier G., De Lean A., Pelletier G., Lemay A., Labrie F. Purification of adenohypophyseal plasma membranes and properties of associated adenylate cyclase. J Biol Chem. 1974 Jan 10;249(1):316–322. [PubMed] [Google Scholar]
  20. Poisner A. Release of transmitters from storage: a contractile model. Adv Biochem Psychopharmacol. 1970;2:95–108. [PubMed] [Google Scholar]
  21. Pollard T. D., Weihing R. R. Actin and myosin and cell movement. CRC Crit Rev Biochem. 1974 Jan;2(1):1–65. doi: 10.3109/10409237409105443. [DOI] [PubMed] [Google Scholar]
  22. Rees M. K., Young M. Studies on the isolation and molecular properties of homogeneous globular actin. Evidence for a single polypeptide chain structure. J Biol Chem. 1967 Oct 10;242(19):4449–4458. [PubMed] [Google Scholar]
  23. Sarkar S., Sreter F. A., Gergely J. Light chains of myosins from white, red, and cardiac muscles. Proc Natl Acad Sci U S A. 1971 May;68(5):946–950. doi: 10.1073/pnas.68.5.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Somlyo A. P., Devine C. E., Somlyo A. V., Rice R. V. Filament organization in vertebrate smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):223–229. doi: 10.1098/rstb.1973.0027. [DOI] [PubMed] [Google Scholar]
  25. Stossel T. P., Hartwig J. H. Interactions between actin, myosin, and an actin-binding protein from rabbit alveolar macrophages. Alveolar macrophage myosin Mg-2+-adenosine triphosphatase requires a cofactor for activation by actin. J Biol Chem. 1975 Jul 25;250(14):5706–5712. [PubMed] [Google Scholar]
  26. Van Obberghen E., Somers G., Devis G., Ravazzola M., Malaisse-Lagae F., Orci L., Malaisse W. J. Dynamics of insulin release and microtubular-microfilamentous system. VII. Do microfilaments provide the motive force for the translocation and extrusion of beta granules? Diabetes. 1975 Oct;24(10):892–901. doi: 10.2337/diab.24.10.892. [DOI] [PubMed] [Google Scholar]
  27. Willingham M. C., Ostlund R. E., Pastan I. Myosin is a component of the cell surface of cultured cells. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4144–4148. doi: 10.1073/pnas.71.10.4144. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES