Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jul 1;78(1):260–273. doi: 10.1083/jcb.78.1.260

Observations of the marginal band system of nucleated erythrocytes

PMCID: PMC2110161  PMID: 307555

Abstract

The marginal band (MB) of nucleated erythrocytes (thos of nonmammalian vertebrates) is a continuous peripheral bundle of microtubules normally obscured by hemoglobin. Treatment of these elliptical cells with modified microtubule polymerization media containing Triton X-100 yields a semilysed system in which MB, nucleus, and trans-MB material (TBM) are visible under phase contrast. The TBM apparently interconnects structural components, passing around opposite sides of the nucleus and suspending it in native position. In uranyl acetatestained whole whole mounts (goldfish) examined by transmission electron microscopy, the TBM appears as a network. MBs of semilysed cells are relatively planar initially, but twist subsequently into a range of "figure-8" shapes with one of the two possible mirror-image configurations predominant. Nuclei and MBs can be released using proteolytic enzymes, to which the TBM seems most rapidly vulnerable. MBs thus freed are birefringent, generally untwisted, and much more circular than they are in situ. As a working hypothesis, it is prosposed that the flattened, elliptical shape of nucleated erythrocytes is a result of TBM tension applied asymmetrically across an otherwise more circular MB, and that the firure-8 configuration occurs when there is extreme TBM shrinkage or contraction.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BETTEX-GALLAND M., LUESCHER E. F. Extraction of an actomyosin-like protein from human thrombocytes. Nature. 1959 Jul 25;184(Suppl 5):276–277. doi: 10.1038/184276b0. [DOI] [PubMed] [Google Scholar]
  2. Barrett L. A., Dawson R. B. Avian erythrocyte development: microtubules and the formation of the disk shape. Dev Biol. 1974 Jan;36(1):72–81. doi: 10.1016/0012-1606(74)90191-2. [DOI] [PubMed] [Google Scholar]
  3. Behnke O. Further studies on microtubules. A marginal bundle in human and rat thrombocytes. J Ultrastruct Res. 1965 Dec;13(5):469–477. doi: 10.1016/s0022-5320(65)90009-2. [DOI] [PubMed] [Google Scholar]
  4. Behnke O., Kristensen B. I., Nielsen L. E. Electron microscopical observations on actinoid and myosinoid filaments in blood platelets. J Ultrastruct Res. 1971 Nov;37(3):351–369. doi: 10.1016/s0022-5320(71)80129-6. [DOI] [PubMed] [Google Scholar]
  5. Bertolini B., Monaco G. The microtubule marginal band of the newt erythrocyte. Observations on the isolated band. J Ultrastruct Res. 1976 Jan;54(1):59–67. doi: 10.1016/s0022-5320(76)80008-1. [DOI] [PubMed] [Google Scholar]
  6. Cabot R. C. Ring Bodies (nuclear Remnants?) in Anemic Blood. J Med Res. 1903 Feb;9(1):15–18.11. [PMC free article] [PubMed] [Google Scholar]
  7. Cande W. Z., Snyder J., Smith D., Summers K., McIntosh J. R. A functional mitotic spindle prepared from mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1559–1563. doi: 10.1073/pnas.71.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. FAWCETT W., WITEBSKY F. OBSERVATIONS ON THE ULTRASTRUCTURE OF NUCLEATED ERYTHROCYTES AND THROMBOCYTES, WITH PARTICULAR REFERENCE TO THE STRUCTURAL BASIS OF THEIR DISCOIDAL SHAPE. Z Zellforsch Mikrosk Anat. 1964 May 29;62:785–806. doi: 10.1007/BF00342184. [DOI] [PubMed] [Google Scholar]
  9. Gerrard J. M., White J. G., Rao G. H. Effects of the lonophore A23187 on the blood platelets II. Influence on ultrastructure. Am J Pathol. 1974 Nov;77(2):151–166. [PMC free article] [PubMed] [Google Scholar]
  10. Goto S., Ringertz N. R. Preparation and characterization of chick erythrocyte nuclei from heterokaryons. Exp Cell Res. 1974 Mar 30;85(1):173–181. doi: 10.1016/0014-4827(74)90228-6. [DOI] [PubMed] [Google Scholar]
  11. Grasso J. A. Cytoplasmic microtubules in mammalian erythropoietic cells. Anat Rec. 1966 Dec;156(4):397–413. doi: 10.1002/ar.1091560404. [DOI] [PubMed] [Google Scholar]
  12. Harris H. Behaviour of differentiated nuclei in heterokaryons of animal cells from different species. Nature. 1965 May 8;206(984):583–588. doi: 10.1038/206583a0. [DOI] [PubMed] [Google Scholar]
  13. McGill M., Brinkley B. R. Human chromosomes and centrioles as nucleating sites for the in vitro assembly of microtubules from bovine brain tubulin. J Cell Biol. 1975 Oct;67(1):189–199. doi: 10.1083/jcb.67.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. PICARD D. Nature et signification des anneaux de Cabot des hématies. C R Seances Soc Biol Fil. 1953 Aug-Sep;147(15-18):1451–1453. [PubMed] [Google Scholar]
  15. Sandborn E. B., LeBuis J. J., Bois P. Cytoplasmic microtubules in blood platelets. Blood. 1966 Feb;27(2):247–252. [PubMed] [Google Scholar]
  16. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. VAN OYE E. L'origine des anneaux de Cabot. Rev Hematol. 1954;9(2):173–179. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES