Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jul 1;78(1):168–175. doi: 10.1083/jcb.78.1.168

Mechanism for the selection of nuclear polypeptides in Xenopus oocytes

PMCID: PMC2110164  PMID: 566759

Abstract

The function of the nuclear envelope in regulating the cellular distribution of proteins was studied by experimentally altering nuclear permeability and determing the effect of the procedure on the incorporation of exogenous and endogenous polypeptides into the nucleoplasm. Using fine glass needles, nuclear envelopes were disrupted by puncturing oocytes in that region of the animal pole occupied by the germinal vesicle. This resulted in a highly significant increase in the nuclear uptake of cytoplasmically injected [125I]-bovine serum albumin ([125I]BSA), deomonstrating that the envelopes had lost their capacity to act as effective barriers to the diffusion of macromolecules. Endogenous proteins were labeled by incubating oocytes in L- [3H]lecuine. After appropriate intervals, nuclei were isolated from punctured and control cells and analyzed for tritiated polypeptides. Both total precipitable counts and the proportion of label in different size classes of polypeptides were compared. The results showed that puncturing the oocytes had no apparent quantitative or qualitative effects on the uptake of endogenous polypeptides by the nuclei. It can be concluded that the accumulation of specific nuclear proteins is not controlled by the envelope but rather by selective binding within the nucleoplasm.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, allow entry to small proteins, and exclude large proteins. J Cell Biol. 1975 Feb;64(2):421–430. doi: 10.1083/jcb.64.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonner W. M. Protein migration into nuclei. II. Frog oocyte nuclei accumulate a class of microinjected oocyte nuclear proteins and exclude a class of microinjected oocyte cytoplasmic proteins. J Cell Biol. 1975 Feb;64(2):431–437. doi: 10.1083/jcb.64.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dumont J. N. Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol. 1972 Feb;136(2):153–179. doi: 10.1002/jmor.1051360203. [DOI] [PubMed] [Google Scholar]
  4. FELDHERR C. M., MARSHALL J. M., Jr The use of colloidal gold for studies of intracellular exchanges in the ameba Chaos chaos. J Cell Biol. 1962 Mar;12:640–645. doi: 10.1083/jcb.12.3.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FELDHERR C. M. THE EFFECT OF THE ELECTRON-OPAQUE PORE MATERIAL ON EXCHANGES THROUGH THE NUCLEAR ANNULI. J Cell Biol. 1965 Apr;25:43–53. doi: 10.1083/jcb.25.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FELDHERR C. M. The intracellular distribution of ferritin following microinjection. J Cell Biol. 1962 Jan;12:159–167. doi: 10.1083/jcb.12.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Feldherr C. M. Nucleocytoplasmic exchanges during early interphase. J Cell Biol. 1968 Oct;39(1):49–54. doi: 10.1083/jcb.39.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Feldherr C. M., Richmond P. A. The localization of the nuclear protein pool in Xenopus oocytes. Exp Cell Res. 1976 Jul;100(2):417–419. doi: 10.1016/0014-4827(76)90171-3. [DOI] [PubMed] [Google Scholar]
  9. Feldherr C. M. The uptake of endogenous proteins by oocyte nuclei. Exp Cell Res. 1975 Jul;93(2):411–419. doi: 10.1016/0014-4827(75)90467-x. [DOI] [PubMed] [Google Scholar]
  10. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kalt M. R., Tandler B. A study of fixation of early amphibian embryos for electron microscopy. J Ultrastruct Res. 1971 Sep;36(5):633–645. doi: 10.1016/s0022-5320(71)90020-7. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Legname C., Goldstein L. Proteins in nucleocytoplasmic interactions. VI. Is there an artefact responsible for the observed shuttling of proteins between cytoplasm and nucleus in Amoeba proteus? Exp Cell Res. 1972 Nov;75(1):111–121. doi: 10.1016/0014-4827(72)90526-5. [DOI] [PubMed] [Google Scholar]
  14. Merriam R. W., Hill R. J. The germinal vesicle nucleus of Xenopus laevis oocytes as a selective storage receptacle for proteins. J Cell Biol. 1976 Jun;69(3):659–668. doi: 10.1083/jcb.69.3.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paine P. L., Feldherr C. M. Nucleocytoplasmic exchange of macromolecules. Exp Cell Res. 1972 Sep;74(1):81–98. doi: 10.1016/0014-4827(72)90483-1. [DOI] [PubMed] [Google Scholar]
  16. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  17. Smith L. D., Ecker R. E. Regulatory processes in the maturation and early cleavage of amphibian eggs. Curr Top Dev Biol. 1970;5:1–38. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES