Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Jul 1;78(1):214–226. doi: 10.1083/jcb.78.1.214

Assays of the metabolic viability of single giant mitochondria. Experiments with intact and impaled mitochondria

PMCID: PMC2110169  PMID: 670293

Abstract

Single giant mitochondria isolated from mice fed cuprizone were assayed for their metabolic viability. Two tests were devised. One test optically detected the accumulation of calcium phosphate within the mitochondria under massive loading conditions (including the presence of succinate and ATP). The accumulation corresponds to a test of energy coupling from either electron transport or the hydrolysis of ATP since it is blocked by either antimycin A or oligomycin. The other assay tested for the production of ATP from ADP and Pi, using myofibrils. Myofibrils prepared from glycerinated rabbit psoas muscle contract only in the presence of ATP and not in the presence of ADP. Myofibrillar contraction is unaffected by the presence of antimycin A or oligomycin. However, myofibrils in the presence of mitochondria that are phosphorylating ADP to ATP do contract. This contraction is blocked by antimycin A and/or oligomycin. Hence, the ATP which causes myofibrillar contraction is produced by oxidative phosphorylation. At low mitochondrial concentration, only the myofibrils in close proximity with mitochondria contract in the presence of ADP. Therefore the assay can be used to test the viability of individual mitochondria. Individual giant mitochondria were found to be viable, using both of these assays. Comparable results were obtained in mitochondria impaled with microelectrodes. The potentials and resistances were unaffected by concomitant calcium phosphate accumulation or oxidative phosphorylation.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., David G. B., Nomarski G. The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk. 1969 Nov;69(4):193–221. [PubMed] [Google Scholar]
  2. BARTER R., DANIELLI J. F., DAVIES H. G. A quantitative cytochemical method for estimating alkaline phosphatase activity. Proc R Soc Lond B Biol Sci. 1955 Nov 29;144(916):412–426. [PubMed] [Google Scholar]
  3. CHANCE B., HOLLUNGER G. The interaction of energy and electron transfer reactions in mitochondria. VI. The efficiency of the reaction. J Biol Chem. 1961 May;236:1577–1584. [PubMed] [Google Scholar]
  4. DAVIES H. G., ENGSTROM A. Interferometric and x-ray absorption studies of bone tissue. Exp Cell Res. 1954 Aug;7(1):243–255. doi: 10.1016/0014-4827(54)90059-2. [DOI] [PubMed] [Google Scholar]
  5. DAVIES H. G., WILKINS M. H. F. Interference microscopy and mass determination. Nature. 1952 Mar 29;169(4300):541–541. doi: 10.1038/169541a0. [DOI] [PubMed] [Google Scholar]
  6. ERNSTER L., LEE C. P. BIOLOGICAL OXIDOREDUCTIONS. Annu Rev Biochem. 1964;33:729–790. doi: 10.1146/annurev.bi.33.070164.003501. [DOI] [PubMed] [Google Scholar]
  7. Forer A., Goldman R. D. The concentrations of dry matter in mitotic apparatuses in vivo and after isolation from sea-urchin zygotes. J Cell Sci. 1972 Mar;10(2):387–418. doi: 10.1242/jcs.10.2.387. [DOI] [PubMed] [Google Scholar]
  8. GREENAWALT J. W., ROSSI C. S., LEHNINGER A. L. EFFECT OF ACTIVE ACCUMULATION OF CALCIUM AND PHOSPHATE IONS ON THE STRUCTURE OF RAT LIVER MITOCHONDRIA. J Cell Biol. 1964 Oct;23:21–38. doi: 10.1083/jcb.23.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Isenberg G., Bielser W., Meier-Ruge W., Remy E. Cell surgery by laser micro-dissection: a preparative method. J Microsc. 1976 May;107(1):19–24. doi: 10.1111/j.1365-2818.1976.tb02419.x. [DOI] [PubMed] [Google Scholar]
  10. Kohen E., Siebert G., Kohen C. Transfer of metabolites across the nuclear membrane. A microfluorometric study. Hoppe Seylers Z Physiol Chem. 1971 Jul;352(7):927–937. doi: 10.1515/bchm2.1971.352.2.927. [DOI] [PubMed] [Google Scholar]
  11. Maloff B. L., Scordilis S. P., Reynolds C., Tedeschi H. Membrane potentials and resistances of giant mitochondria. Metabolic dependence and the effects of valinomycin. J Cell Biol. 1978 Jul;78(1):199–213. doi: 10.1083/jcb.78.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maloff B. L., Scordilis S. P., Tedeschi H. Membrane potential of mitochondrial measured with microelectrodes. Science. 1977 Mar 4;195(4281):898–900. doi: 10.1126/science.841317. [DOI] [PubMed] [Google Scholar]
  13. Pemrick S. M., Edwards C. Differences in the charge distribution of glycerol-extracted muscle fibers in rigor, relaxation, and contraction. J Gen Physiol. 1974 Nov;64(5):551–567. doi: 10.1085/jgp.64.5.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. ROSSI C. S., LEHNINGER A. L. STOICHIOMETRIC RELATIONSHIPS BETWEEN ACCUMULATION OF IONS BY MITOCHONDRIA AND THE ENERGY-COUPLING SITES IN THE RESPIRATORY CHAIN. Biochem Z. 1963;338:698–713. [PubMed] [Google Scholar]
  15. Scordilis S. P., Tedeschi H., Edwards C. Donnan potential of rabbit skeletal muscle myofibrils I: electrofluorochromometric detection of potential. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1325–1329. doi: 10.1073/pnas.72.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Suchy J., Cooper C. Isolation and respiratory measurements on a single large mitochondrion. Exp Cell Res. 1974 Sep;88(1):198–202. doi: 10.1016/0014-4827(74)90635-1. [DOI] [PubMed] [Google Scholar]
  17. Wakabayashi T., Asano M., Kurono C. Mechanism of the formation of megamitochondria induced by copper-chelating agents. II. Isolation and some properties of megamitochondria from the cuprizone-treated mouse liver. Acta Pathol Jpn. 1975 Jan;25(1):39–49. [PubMed] [Google Scholar]
  18. Weinbach E. C., Von Brand T. Formation, isolation and composition of dense granules from mitochondria. Biochim Biophys Acta. 1967 Oct 9;148(1):256–266. doi: 10.1016/0304-4165(67)90301-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES