Abstract
Although the purification of microtubules from brain by alternate cycles of polymerization and depolymerization in vitro has become routine, the application of this method to non-neural cultured cells has been less successful. Previous investigations have suggested that it was necessary to use substrate-grown cells and 4 M glycerol to obtain microtubules from cultured cells. We have developed a method for preparing microtubules from HeLa cells in spinner cultures without the use of glycerol. Microtubules can be readily carried through two complete cycles of polymerization at 37 degrees C and depolymerization at 4 degrees C in vitro. The microtubules obtained are morphologically similar to brain microtubules in electron micrographs, and the tubulin subunits have mobilities similar to those of brain tubulins on polyacrylamide gels. Typical yields in the second polymerization pellet are about 1 mg protein/ml of packed cells or 2.5-3.0% of the total protein in the soluble cell extract. The major nontubulin protein present after two cycles of polymerization and depolymerization has an apparent mol wt of 68,000 daltons. If glycerol is used during polymerization, this band is virtually absent.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barnes L. D., Engel A. G., Dousa T. P. Studies on in vitro polymerization of tubulin from renal medullary extracts. Biochim Biophys Acta. 1975 Oct 20;405(2):422–433. doi: 10.1016/0005-2795(75)90107-5. [DOI] [PubMed] [Google Scholar]
- Bryan J. B., Nagle B. W., Doenges K. H. Inhibition of tubulin assembly by RNA and other polyanions: evidence for a required protein. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3570–3574. doi: 10.1073/pnas.72.9.3570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castle A. G., Crawford N. Isolation of tubulin from pig platelets. FEBS Lett. 1975 Mar 1;51(1):195–200. doi: 10.1016/0014-5793(75)80886-6. [DOI] [PubMed] [Google Scholar]
- Castle A. G., Crawford N. The isolation and characterisation of platelet microtubule proteins. Biochim Biophys Acta. 1977 Sep 27;494(1):76–91. doi: 10.1016/0005-2795(77)90136-2. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W., Hwo S. Y., Kirschner M. W. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol. 1977 Oct 25;116(2):227–247. doi: 10.1016/0022-2836(77)90214-5. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W., Hwo S. Y., Kirschner M. W. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol. 1977 Oct 25;116(2):207–225. doi: 10.1016/0022-2836(77)90213-3. [DOI] [PubMed] [Google Scholar]
- Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Immunoflourescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2437–2440. doi: 10.1073/pnas.74.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doenges K. H., Nagle B. W., Uhlmann A., Bryan J. In vitro assembly of tubulin from nonneural cells (Ehrlich ascites tumor cells). Biochemistry. 1977 Jul 26;16(15):3455–3459. doi: 10.1021/bi00634a025. [DOI] [PubMed] [Google Scholar]
- Green L. H., Brandis J. W., Turner F. R., Raff R. A. Cytoplasmic microtubule proteins of the embryo of Drosophila melanogaster. Biochemistry. 1975 Oct 7;14(20):4487–4491. doi: 10.1021/bi00691a023. [DOI] [PubMed] [Google Scholar]
- Gruenstein E., Rich A., Weihing R. R. Actin associated with membranes from 3T3 mouse fibroblast and HeLa cells. J Cell Biol. 1975 Jan;64(1):223–234. doi: 10.1083/jcb.64.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikeda Y., Steiner M. Isolation of platelet microtubule protein by an immunosorptive method. J Biol Chem. 1976 Oct 10;251(19):6135–6141. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Murphy D. B., Borisy G. G. Association of high-molecular-weight proteins with microtubules and their role in microtubule assembly in vitro. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2696–2700. doi: 10.1073/pnas.72.7.2696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murphy D. B., Vallee R. B., Borisy G. G. Identity and polymerization-stimulatory activity of the nontubulin proteins associated with microtubules. Biochemistry. 1977 Jun 14;16(12):2598–2605. doi: 10.1021/bi00631a004. [DOI] [PubMed] [Google Scholar]
- Nagle B. W., Doenges K. H., Bryan J. Assembly of tubulin from cultured cells and comparison with the neurotubulin model. Cell. 1977 Nov;12(3):573–586. doi: 10.1016/0092-8674(77)90258-6. [DOI] [PubMed] [Google Scholar]
- Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
- Rebhun L. I., Jemiolo D., Ivy N., Mellon M., Nath J. Regulation of the in vivo mitotic apparatus by glycols and metabolic inhibitors. Ann N Y Acad Sci. 1975 Jun 30;253:362–377. doi: 10.1111/j.1749-6632.1975.tb19214.x. [DOI] [PubMed] [Google Scholar]
- Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherline P., Schiavone K. Immunofluorescence localization of proteins of high molecular weight along intracellular microtubules. Science. 1977 Dec 9;198(4321):1038–1040. doi: 10.1126/science.337490. [DOI] [PubMed] [Google Scholar]
- Sloboda R. D., Dentler W. L., Rosenbaum J. L. Microtubule-associated proteins and the stimulation of tubulin assembly in vitro. Biochemistry. 1976 Oct 5;15(20):4497–4505. doi: 10.1021/bi00665a026. [DOI] [PubMed] [Google Scholar]
- Vallee R. B., Borisy G. G. Removal of the projections from cytoplasmic microtubules in vitro by digestion with trypsin. J Biol Chem. 1977 Jan 10;252(1):377–382. [PubMed] [Google Scholar]
- Weatherbee J. A., Luftig R. B., Weihing R. R. Binding of adenovirus to microtubules. II. Depletion of high-molecular-weight microtubule-associated protein content reduces specificity of in vitro binding. J Virol. 1977 Feb;21(2):732–742. doi: 10.1128/jvi.21.2.732-742.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiche G., Cole R. D. Reversible in vitro polymerization of tubulin from a cultured cell line (rat glial cell clone C6). Proc Natl Acad Sci U S A. 1976 Apr;73(4):1227–1231. doi: 10.1073/pnas.73.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wiche G., Lundblad V. J., Cole R. D. Competence of soluble cell extracts as microtubule assembly systems. Comparison of simian virus 40 transformed and nontransformed mouse 3T3 fibroblasts. J Biol Chem. 1977 Jan 25;252(2):794–796. [PubMed] [Google Scholar]
- Witman G. B., Cleveland D. W., Weingarten M. D., Kirschner M. W. Tubulin requires tau for growth onto microtubule initiating sites. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4070–4074. doi: 10.1073/pnas.73.11.4070. [DOI] [PMC free article] [PubMed] [Google Scholar]