Abstract
The morphological features of pinched-off presynaptic nerve terminals (synaptosomes) from rat brain were examined with electron microscope techniques; in many experiments, an extracellular marked (horseradish peroxidase or colloidal thorium dioxide) was included in the incubation media. When incubated in physiological saline, most terminals appeared approximately spherical, and were filled with small (approximately 400- A diameter) "synaptic vesicles"; mitochondria were also present in many of the terminals. In a number of instances the region of synaptic contact, with adhering portions of the postsynaptic cell membrane and postsynaptic density, could be readily discerned. Approximately 20--30% of the terminals in our preparations exhibited clear evidence of damage, as indicated by diffuse distribution of extracellular markers in the cytoplasm; the markers appeared to be excluded from the intraterminal vesicles under these circumstances. The markers were excluded from the cytoplasm in approximately 70--80% of the terminals, which may imply that these terminals have intact plasma membranes. When the terminals were treated with depolarizing agents (veratridine or K- rich media), in the presence of Ca, many new, large (600--900-A diameter) vesicles and some coated vesicles and new vacuoles appeared. When the media contained an extracellular marker, the newly formed structures frequently were labeled with the marker. If the veratridine- depolarized terminals were subsequently treated with tetrodotoxin (to repolarize the terminals) and allowed to "recover" for 60--90 min, most of the large marker-containing vesicles disappeared, and numerous small (approximately 400-A diameter) marker-containing vesicles appeared. These observations are consistent with the idea that pinched-off presynaptic terminals contain all of the machinery necessary for vesicular exocytosis and for the retrieval and recycling of synaptic vesicle membrane. The vesicle membrane appears to be retrieval primarily in the form of large diameter vesicles which are subsequently reprocessed to form new "typical" small-diameter synaptic vesicles.
Full Text
The Full Text of this article is available as a PDF (4.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett J. P., Jr, Mulder A. H., Snyder S. H. Neurochemical correlates of synaptically active amino acids. Life Sci. 1974 Sep 15;15(6):1045–1056. doi: 10.1016/s0024-3205(74)80002-0. [DOI] [PubMed] [Google Scholar]
- Birks R. I. The fine structure of motor nerve endings at frog myoneural junctions. Ann N Y Acad Sci. 1966 Jan 26;135(1):8–19. doi: 10.1111/j.1749-6632.1966.tb45458.x. [DOI] [PubMed] [Google Scholar]
- Blaustein M. P., Ector A. C. Barbiturate inhibition of calcium uptake by depolarized nerve terminals in vitro. Mol Pharmacol. 1975 May;11(3):369–378. [PubMed] [Google Scholar]
- Blaustein M. P. Effects of potassium, veratridine, and scorpion venom on calcium accumulation and transmitter release by nerve terminals in vitro. J Physiol. 1975 Jun;247(3):617–655. doi: 10.1113/jphysiol.1975.sp010950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blaustein M. P., Goldring J. M. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. J Physiol. 1975 Jun;247(3):589–615. doi: 10.1113/jphysiol.1975.sp010949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bunge M. B. Initial endocytosis of perioxidase or ferritin by growth cones of cultured nerve cells. J Neurocytol. 1977 Aug;6(4):407–439. doi: 10.1007/BF01178226. [DOI] [PubMed] [Google Scholar]
- Clementi F., Palade G. E. Intestinal capillaries. I. Permeability to peroxidase and ferritin. J Cell Biol. 1969 Apr;41(1):33–58. doi: 10.1083/jcb.41.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couteaux R., Pécot-Dechavassine M. Vésicules synaptiques et poches au niveau des "zones actives" de la jonction neuromusculaire. C R Acad Sci Hebd Seances Acad Sci D. 1970 Dec 21;271(25):2346–2349. [PubMed] [Google Scholar]
- DE ROBERTIS E. D., BENNETT H. S. Some features of the submicroscopic morphology of synapses in frog and earthworm. J Biophys Biochem Cytol. 1955 Jan;1(1):47–58. doi: 10.1083/jcb.1.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Droz B., Rambourg A., Koenig H. L. The smooth endoplasmic reticulum: structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport. Brain Res. 1975 Jul 25;93(1):1–13. doi: 10.1016/0006-8993(75)90282-6. [DOI] [PubMed] [Google Scholar]
- Fried R. C., Blaustein M. P. Synaptic vesicle recycling in synaptosomes in vitro. Nature. 1976 May 20;261(5557):255–256. doi: 10.1038/261255a0. [DOI] [PubMed] [Google Scholar]
- GRAY E. G., WHITTAKER V. P. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J Anat. 1962 Jan;96:79–88. [PMC free article] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
- Gray E. G., Willis R. A. On synaptic vesicles, complex vesicles and dense projections. Brain Res. 1970 Dec 1;24(2):149–168. doi: 10.1016/0006-8993(70)90097-1. [DOI] [PubMed] [Google Scholar]
- Hajós F. An improved method for the preparation of synaptosomal fractions in high purity. Brain Res. 1975 Aug 15;93(3):485–489. doi: 10.1016/0006-8993(75)90186-9. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J., Miledi R. Effects of lanthanum ions on function and structure of frog neuromuscular junctions. Proc R Soc Lond B Biol Sci. 1971 Dec 14;179(1056):247–260. doi: 10.1098/rspb.1971.0096. [DOI] [PubMed] [Google Scholar]
- Katz B., Miledi R. The timing of calcium action during neuromuscular transmission. J Physiol. 1967 Apr;189(3):535–544. doi: 10.1113/jphysiol.1967.sp008183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuhar M. J. Neurotransmitter uptake: a tool in identifying neurotransmitter-specific pathways. Life Sci. 1973 Dec 16;13(12):1623–1634. doi: 10.1016/0024-3205(73)90110-0. [DOI] [PubMed] [Google Scholar]
- Kuno M. Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physiol Rev. 1971 Oct;51(4):647–678. doi: 10.1152/physrev.1971.51.4.647. [DOI] [PubMed] [Google Scholar]
- Pfenninger K., Akert K., Moor H., Sandri C. The fine structure of freeze-fractured presynaptic membranes. J Neurocytol. 1972 Sep;1(2):129–149. doi: 10.1007/BF01099180. [DOI] [PubMed] [Google Scholar]
- Pysh J. J., Wiley R. G. Synaptic vesicle depletion and recovery in cat sympathetic ganglia electrically stimulated in vivo. Evidence for transmitter secretion by exocytosis. J Cell Biol. 1974 Feb;60(2):365–374. doi: 10.1083/jcb.60.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Villegas G. M., Fernández J. Permeability to thorium dioxide of the intercellular spaces of the frog cerebral hemisphere. Exp Neurol. 1966 May;15(1):18–36. doi: 10.1016/0014-4886(66)90031-8. [DOI] [PubMed] [Google Scholar]
- Zacks S. I., Saito A. Uptake of exogenous horseradish peroxidase by coated vesicles in mouse neuromuscular junctions. J Histochem Cytochem. 1969 Mar;17(3):161–170. doi: 10.1177/17.3.161. [DOI] [PubMed] [Google Scholar]
- Zimmerman H., Denston C. R. Recycling of synaptic vesicles in the cholinergic synapses of the Torpedo electric organ during induced transmitter release. Neuroscience. 1977;2(5):695–714. doi: 10.1016/0306-4522(77)90024-0. [DOI] [PubMed] [Google Scholar]