Abstract
A method has been developed for the preparation of large numbers of glial (Muller) cells from the turtle retina. After proteolytic dissociation of the retina, Muller cells were separated from retinal neurons by velocity sedimentation at unit gravity. Fractions containing >90 percent morphologically identifiable Muller cells were prepared by this procedure. Fractions containing only Muller cells were obtained by drawing selected cells individually into a micropipette under visual observation. Biochemical analyses of isolated Muller cells showed that (a) these cells did not synthesize and accumulate acetylcholine, γ-aminobutyric acid, or catecholamines when incubated with appropriate radioactive precursors; (b) the specific activities of choline acetyltransferase (EC 2.3.1.6), glutamate decarboxylase (EC 4.1.1.15), and tyrosine hydroxylase (EC 1.14.16.2) in these cells were less than 2 percent of those found in the retina; (c) Muller cells, however, contained high activities of transmitter degrading enzymes-acetylcholinesterase (EC 3.1.1.7) and γ-aminobutyrate- transamine (EC 2.6.1.19); and (d) the cells also possessed high levels of two presumably glial-specific-enzymes-glutamine synthetase (EC 6.3.1.2) and carbonic anhydrase (EC 4.2.1.1). These results, together with other findings, suggest that Muller cells are not capable of neurotransmitter syntheses but possess the enzymes necessary for two important roles in the retina: (a) the inactivation of certain transmitters after synaptic transmission by uptake and degradation, and (b) the maintenance of acid-base balance and the provision of a stable microenvironment in the retina by the removal of metabolic products such as carbon dioxide and ammonia.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bevan S., Miledi R., Grampp W. Induced transmitter release from Schwann cells and its suppression by actinomycin D. Nat New Biol. 1973 Jan 17;241(107):85–86. doi: 10.1038/newbio241085a0. [DOI] [PubMed] [Google Scholar]
- Coggeshall R. E., Dewhurst S. A., Weinreich D., McCaman R. E. Aromatic acid decarboxylase and choline acetylase activities in a single identified 5-HT containing cell of the leech. J Neurobiol. 1972;3(3):259–265. doi: 10.1002/neu.480030308. [DOI] [PubMed] [Google Scholar]
- Coyle J. T. Tyrosine hydroxylase in rat brain--cofactor requirements, regional and subcellular distribution. Biochem Pharmacol. 1972 Jul 15;21(14):1935–1944. doi: 10.1016/0006-2952(72)90006-8. [DOI] [PubMed] [Google Scholar]
- Dennis M. J., Miledi R. Electrically induced release of acetylcholine from denervated Schwann cells. J Physiol. 1974 Mar;237(2):431–452. doi: 10.1113/jphysiol.1974.sp010490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faeder I. R., Salpeter M. M. Glutamate uptake by a stimulated insect nerve muscle preparation. J Cell Biol. 1970 Aug;46(2):300–307. doi: 10.1083/jcb.46.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler L. J., John R. A. Active-site-directed irreversible inhibition of rat brain 4-aminobutyrate aminotransferase by ethanolamine O-sulphate in vitro and in vivo. Biochem J. 1972 Nov;130(2):569–573. doi: 10.1042/bj1300569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIACOBINI E. A cytochemical study of the localization of carbonic anhydrase in the nervous system. J Neurochem. 1962 Mar-Apr;9:169–177. doi: 10.1111/j.1471-4159.1962.tb11859.x. [DOI] [PubMed] [Google Scholar]
- Hall Z. W., Kravitz E. A. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system. I. GABA-glutamate transaminase. J Neurochem. 1967 Jan;14(1):45–54. doi: 10.1111/j.1471-4159.1967.tb09492.x. [DOI] [PubMed] [Google Scholar]
- Hamberger A., Blomstrand C., Lehninger A. L. Comparative studies on mitochondria isolated from neuron-enriched and glia-enriched fractions of rabbit and beef brain. J Cell Biol. 1970 May;45(2):221–234. doi: 10.1083/jcb.45.2.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hemminki K., Hemminki E., Giacobini E. Activity of enzymes related to neurotransmission in neuronal and glial fractions. Int J Neurosci. 1973 Feb;5(2):87–90. doi: 10.3109/00207457309149458. [DOI] [PubMed] [Google Scholar]
- Henn F. A., Hamberger A. Glial cell function: uptake of transmitter substances. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2686–2690. doi: 10.1073/pnas.68.11.2686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hildebrand J. G., Barker D. L., Herbert E., Kravitz E. A. Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol. 1971;2(3):231–246. doi: 10.1002/neu.480020305. [DOI] [PubMed] [Google Scholar]
- Hyde J. C., Robinson N. Localisation of sites of GABA catabolism in the rat retina. Nature. 1974 Mar 29;248(447):432–433. doi: 10.1038/248432a0. [DOI] [PubMed] [Google Scholar]
- Kaneko A., Lam D. M., Wiesel T. N. Isolated horizontal cells of elasmobranch retinae. Brain Res. 1976 Apr 9;105(3):567–572. doi: 10.1016/0006-8993(76)90605-3. [DOI] [PubMed] [Google Scholar]
- Kennedy A. J., Voaden M. J., Marshall J. Glutamate metabolism in the frog retina. Nature. 1974 Nov 1;252(5478):50–52. doi: 10.1038/252050a0. [DOI] [PubMed] [Google Scholar]
- Kuffler S. W., Nicholls J. G. The physiology of neuroglial cells. Ergeb Physiol. 1966;57:1–90. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lam D. M. Biosynthesis of acetylcholine in turtle photoreceptors. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1987–1991. doi: 10.1073/pnas.69.7.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lam D. M. Synaptic chemistry of identified cells in the vertebrate retina. Cold Spring Harb Symp Quant Biol. 1976;40:571–579. doi: 10.1101/sqb.1976.040.01.053. [DOI] [PubMed] [Google Scholar]
- Lam D. M. The biosynthesis and content of gamma-aminobutyric acid in the goldifsh retina. J Cell Biol. 1972 Aug;54(2):225–231. doi: 10.1083/jcb.54.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marshall J., Voaden M. Autoradiographic identification of the cells accumulating 3H gamma-aminobutyric acid in mammalian retinae: a species comparison. Vision Res. 1975 Mar;15(3):459–461. doi: 10.1016/0042-6989(75)90102-9. [DOI] [PubMed] [Google Scholar]
- Martinez-Hernandez A., Bell K. P., Norenberg M. D. Glutamine synthetase: glial localization in brain. Science. 1977 Mar 25;195(4284):1356–1358. doi: 10.1126/science.14400. [DOI] [PubMed] [Google Scholar]
- Minchin M. C., Iversen L. L. Release of (3H)gamma-aminobutyric acid from glial cells in rat dorsal root ganglia. J Neurochem. 1974 Sep;23(3):533–540. doi: 10.1111/j.1471-4159.1974.tb06056.x. [DOI] [PubMed] [Google Scholar]
- Molinoff P. B., Kravitz E. A. The metabolism of gamma-aminobutyric acid (GABA) in the lobster nervous system--glutamic decarboxylase. J Neurochem. 1968 May;15(5):391–409. doi: 10.1111/j.1471-4159.1968.tb11626.x. [DOI] [PubMed] [Google Scholar]
- Orkand P. M., Kravitz E. A. Localization of the sites of gamma-aminobutyric acid (GABA) uptake in lobster nerve-muscle preparations. J Cell Biol. 1971 Apr;49(1):75–89. doi: 10.1083/jcb.49.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schrier B. K., Thompson E. J. On the role of glial cells in the mammalian nervous system. Uptake, excretion, and metabolism of putative neurotransmitters by cultured glial tumor cells. J Biol Chem. 1974 Mar 25;249(6):1769–1780. [PubMed] [Google Scholar]
- Schubert D., Heinemann S., Carlisle W., Tarikas H., Kimes B., Patrick J., Steinbach J. H., Culp W., Brandt B. L. Clonal cell lines from the rat central nervous system. Nature. 1974 May 17;249(454):224–227. doi: 10.1038/249224a0. [DOI] [PubMed] [Google Scholar]
- Sinha A. K., Rose S. P. Monoamineoxidase and cholinesterase activity in neurons and neuropil from the rat cerebral cortex. J Neurochem. 1972 Jun;19(6):1607–1610. doi: 10.1111/j.1471-4159.1972.tb05106.x. [DOI] [PubMed] [Google Scholar]
- Varon S. Neurons and glia in neural cultures. Exp Neurol. 1975 Sep;48(3 Pt 2):93–195. doi: 10.1016/0014-4886(75)90173-9. [DOI] [PubMed] [Google Scholar]