Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Sep 1;78(3):653–662. doi: 10.1083/jcb.78.3.653

Neurofilament proteins of rat peripheral nerve and spinal cord

PMCID: PMC2110201  PMID: 701353

Abstract

Intact neurofilaments were isolated in parallel from rat peripheral nerve and spinal cord by osmotic shock into hypotonic media containing divalent cation chelators. Isolated neurofilaments were washed and separated by multiple centrifugations in 0.1 M NaCl. Abundant intact neurofilaments were identified in the washed pellets by negative staining techniques. Their origin from neurofilaments was confirmed by immune electron microscopy. Washed neurofilaments were extracted from lipid and membranous components with 8 M urea. Analyses of neurofilament isolates on sodium dodecyl sulfate gels showed that proteins of 200,000, 150,000, and 69,000 mol wt were the major components of intact neurofilaments derived from rat peripheral and central nervous systems. These same proteins were identified in whole tissue homogenates of both sources and became enriched during the isolation of intact neurofilaments. A minor component of 64,000 mol wt arose during isolation. Other proteins were identified as contaminants. Small amounts of proteins with electrophoretic migration of tubulin and actin remain in neurofilament isolates.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dahl D., Bignami A. Effect of sodium dodecyl sulfate on the immunogenic properties of the glial fibrillary acidic protein. J Immunol Methods. 1977;17(3-4):201–209. doi: 10.1016/0022-1759(77)90102-8. [DOI] [PubMed] [Google Scholar]
  2. Dahl D., Bignami A. Preparation of antisera to neurofilament protein from chicken brain and human sciatic nerve. J Comp Neurol. 1977 Dec 15;176(4):645–657. doi: 10.1002/cne.901760412. [DOI] [PubMed] [Google Scholar]
  3. Davison P. F., Hong B. S., Cooke P. Classes of distinguishable 10 nm cytoplasmic filaments. Exp Cell Res. 1977 Oct 15;109(2):471–474. doi: 10.1016/0014-4827(77)90033-7. [DOI] [PubMed] [Google Scholar]
  4. Davison P. F., Winslow B. The protein subunit of calf brain neurofilament. J Neurobiol. 1974;5(2):119–133. doi: 10.1002/neu.480050204. [DOI] [PubMed] [Google Scholar]
  5. De Vries G. H., Eng L. F., Lewis D. L., Hadfield M. G. The protein composition of bovine myelin-free axons. Biochim Biophys Acta. 1976 Jul 19;439(1):133–145. doi: 10.1016/0005-2795(76)90169-0. [DOI] [PubMed] [Google Scholar]
  6. DeVries G. H., Norton W. T., Raine C. S. Axons: isolation from mammalian central nervous system. Science. 1972 Mar 24;175(4028):1370–1372. doi: 10.1126/science.175.4028.1370. [DOI] [PubMed] [Google Scholar]
  7. Feit H., Neudeck U., Shay J. Anomalous electrophoretic properties of brain filament protein subunits. Brain Res. 1977 Sep 16;133(2):341–349. doi: 10.1016/0006-8993(77)90769-7. [DOI] [PubMed] [Google Scholar]
  8. Iqbal K., Grundke-Iqbal I., Wisniewski H. M., Terry R. D. On neurofilament and neurotubule proteins from human autopsy tissue. J Neurochem. 1977 Sep;29(3):417–424. doi: 10.1111/j.1471-4159.1977.tb10689.x. [DOI] [PubMed] [Google Scholar]
  9. Lee V., Yen S. H., Shelanski M. L. Biochemical correlates of astrocytic proliferation in the mutant Staggerer mouse. Brain Res. 1977 Jun 10;128(2):389–392. doi: 10.1016/0006-8993(77)91007-1. [DOI] [PubMed] [Google Scholar]
  10. Schlaepfer W. W., Bunge R. P. Effects of calcium ion concentration on the degeneration of amputated axons in tissue culture. J Cell Biol. 1973 Nov;59(2 Pt 1):456–470. doi: 10.1083/jcb.59.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schlaepfer W. W. Calcium-induced degeneration of axoplasm in isolated segments of rat peripheral nerve. Brain Res. 1974 Apr 5;69(2):203–215. doi: 10.1016/0006-8993(74)90002-x. [DOI] [PubMed] [Google Scholar]
  12. Schlaepfer W. W., Lynch R. G. Immunofluorescence studies of neurofilaments in the rat and human peripheral and central nervous system. J Cell Biol. 1977 Jul;74(1):241–250. doi: 10.1083/jcb.74.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schlaepfer W. W., Micko S. Chemical and structural changes of neurofilaments in transected rat sciatic nerve. J Cell Biol. 1978 Aug;78(2):369–378. doi: 10.1083/jcb.78.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Shelanski M. L., Albert S., DeVries G. H., Norton W. T. Isolation of filaments from brain. Science. 1971 Dec 17;174(4015):1242–1245. doi: 10.1126/science.174.4015.1242. [DOI] [PubMed] [Google Scholar]
  15. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Smith R. S. Microtubule and neurofilament densities in amphibian spinal root nerve fibers: relationship to axoplasmic transport. Can J Physiol Pharmacol. 1973 Nov;51(11):798–806. doi: 10.1139/y73-123. [DOI] [PubMed] [Google Scholar]
  17. Yen S. H., Dahl D., Schachner M., Shelanski M. L. Biochemistry of the filaments of brain. Proc Natl Acad Sci U S A. 1976 Feb;73(2):529–533. doi: 10.1073/pnas.73.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES