Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Sep 1;78(3):951–957. doi: 10.1083/jcb.78.3.951

Ionic interactions between bovine chymotrypsinogen A and chondroitin sulfate A.B.C.. A possible model for molecular aggregation in zymogen granules

PMCID: PMC2110202  PMID: 29905

Abstract

The formation of large aggregates by ionic interactions between acidic glucosaminoglycans and cationic secretory proteins has been proposed as one of the critical steps in the concentration process in the condensing vacuoles of secretory cells. In this paper, this hypothesis was tested by studies on the interactions between bovine chymotrypsinogen A and chondroitin sulfate as a simplified model. Small amounts of chondroitin sulfate were found able to induce chymotrypsinogen precipitation. Like zymogen granules, the resulting aggregates were moderately sensitive to ionic strength and insensitive to osmolality. Moreover, their pH dependence was similar to that of isolated zymogen granules. When sulfated glucosaminoglycans isolated from the zymogen granules of the guinea pig pancreas were used instead of chondroitin sulfate, the same kind of interactions with chymotrypsinogen were obtained. Our data support the hypothesis that the strong ionic interactions between those sulfated glucosaminoglycans and cationic proteins could be responsible for the concentration process.

Full Text

The Full Text of this article is available as a PDF (437.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., McClure W. O. An improved scintillation cocktail of high-solubilizing power. Anal Biochem. 1973 Jan;51(1):173–179. doi: 10.1016/0003-2697(73)90465-x. [DOI] [PubMed] [Google Scholar]
  2. Berg N. B., Austin B. P. Intracellular transport of sulfated macromolecules in parotid acinar cells. Cell Tissue Res. 1976 Jan 26;165(2):215–225. doi: 10.1007/BF00226660. [DOI] [PubMed] [Google Scholar]
  3. Berg N. B., Young R. W. Sulfate metabolism in pancreatic acinar cells. J Cell Biol. 1971 Aug;50(2):469–483. doi: 10.1083/jcb.50.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clemente F., Meldolesi J. Calcium and pancreatic secretion. I. Subcellular distribution of calcium and magnesium in the exocrine pancreas of the guinea pig. J Cell Biol. 1975 Apr;65(1):88–102. doi: 10.1083/jcb.65.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giannattasio G., Zanini A. Presence of sulfated proteoglycans in prolactin secretory granules isolated from the rat pituitary gland. Biochim Biophys Acta. 1976 Aug 9;439(2):349–357. doi: 10.1016/0005-2795(76)90070-2. [DOI] [PubMed] [Google Scholar]
  6. HUMMEL B. C. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Can J Biochem Physiol. 1959 Dec;37:1393–1399. [PubMed] [Google Scholar]
  7. Kern H. F., Kern D. Elektronenmikroskopische Untersuchungen über die Wirkung von Kobaltchlorid auf das exokrine Pankreasgewebe des Meerschweinchens. Virchows Arch B Cell Pathol. 1969;4(1):54–70. [PubMed] [Google Scholar]
  8. Kronquist K. E., Elmahdy A., Ronzio R. A. Synthesis and subcellular distribution of heparan sulfate in the rat exocrine pancreas. Arch Biochem Biophys. 1977 Jul;182(1):188–196. doi: 10.1016/0003-9861(77)90298-3. [DOI] [PubMed] [Google Scholar]
  9. PALADE G. E. Intracisternal granules in the exocrine cells of the pancreas. J Biophys Biochem Cytol. 1956 Jul 25;2(4):417–422. doi: 10.1083/jcb.2.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  11. Reggio H. A., Palade G. E. Sulfated compounds in the zymogen granules of the guinea pig pancreas. J Cell Biol. 1978 May;77(2):288–314. doi: 10.1083/jcb.77.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rothman S. S. The behavior of isolated zymogen granules: pH-dependent release and reassociation of protein. Biochim Biophys Acta. 1971 Aug 13;241(2):567–577. doi: 10.1016/0005-2736(71)90055-1. [DOI] [PubMed] [Google Scholar]
  13. Scheele G. A. Two-dimensional gel analysis of soluble proteins. Charaterization of guinea pig exocrine pancreatic proteins. J Biol Chem. 1975 Jul 25;250(14):5375–5385. [PubMed] [Google Scholar]
  14. Schodt K. P., Gelman R. A., Blackwell J. The effect of changes in salt concentration and pH on the interaction between glycosaminoglycans and cationic polypeptides. Biopolymers. 1976 Oct;15(10):1965–1977. doi: 10.1002/bip.1976.360151008. [DOI] [PubMed] [Google Scholar]
  15. Tartakoff A., Greene L. J., Palade G. E. Studies on the guinea pig pancreas. Fractionation and partial characterization of exocrine proteins. J Biol Chem. 1974 Dec 10;249(23):7420–7431. [PubMed] [Google Scholar]
  16. Young R. W. The role of the Golgi complex in sulfate metabolism. J Cell Biol. 1973 Apr;57(1):175–189. doi: 10.1083/jcb.57.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES