Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Sep 1;78(3):919–936. doi: 10.1083/jcb.78.3.919

Isolation and characterization of the membrane envelope enclosing the bacteroids in soybean root nodules

PMCID: PMC2110206  PMID: 151688

Abstract

The membrane envelope enclosing the bacteroids in soybean root nodules is shown by ultrastructural and biochemical studies to be derived from, and to retain the characteristics of, the host cell plasma membrane. During the early stages of the infection process, which occurs through an invagination, Rhizobium becomes surrounded by the host cell wall and plasma membrane, forming the infection thread. The cell wall of the infection thread is degraded by cellulolytic enzyme(s), leaving behind the enclosed plasma membrane, the membrane envelope. Cellulase activity in young nodules increases two- to threefold as compared to uninfected roots, and this activity is localized in the cell wall matrix of the infection threads. Membrane envelopes were isolated by first preparing bacteroids enclosed in the envelopes on a discontinuous sucrose gradient followed by passage through a hypodermic needle, which released the bacteroids from the membranes. This membrane then sedimented at the interface of 34--45% sucrose (mean density of 1.14 g/cm3). Membranes were characterized by phosphotungstic acid (PTA)- chromic acid staining. ATPase activity, and localization, sensitivity to nonionic detergent Nonidet P-40 (NP-40) and sodium dodecyl sulfate (SDS) gel electrophoresis. These analyses revealed a close similarity between plasma membrane and the membrane envelope. Incorporation of radioactive amino acids into the membrane envelope proteins was sensitive to cycloheximide, suggesting that the biosynthesis of these proteins is primarily under host-cell control. No immunoreactive material to leghemoglobin antibodies was found inside or associated with the isolated bacteroids enclosed in the membrane envelope, and its location is confined to the host cell cytoplasmic matrix.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERGERSEN F. J., BRIGGS M. J. Studies on the bacterial component of soybean root nodules: cytology and organization in the host tissue. J Gen Microbiol. 1958 Dec;19(3):482–490. doi: 10.1099/00221287-19-3-482. [DOI] [PubMed] [Google Scholar]
  2. Bal A. K., Verma D. P., Byrne H., Maclachlan G. A. Subcellular localization of cellulases in auxin-treated pea. J Cell Biol. 1976 Apr;69(1):97–105. doi: 10.1083/jcb.69.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Byrne H., Christou N. V., Verma D. P., Maclachlan G. A. Purification and characterization of two cellulases from auxin-treated pea epicotyls. J Biol Chem. 1975 Feb 10;250(3):1012–1018. [PubMed] [Google Scholar]
  4. Dart P. J., Mercer F. V. Fine structure of bacteroids in root nodules of Vigna sinensis, Acacia longifolia, Viminaria juncea, and Lupinus angustifolius. J Bacteriol. 1966 Mar;91(3):1314–1319. doi: 10.1128/jb.91.3.1314-1319.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dart P. J., Mercer F. V. MEMBRANE ENVELOPES OF LEGUME NODULE BACTEROIDS. J Bacteriol. 1963 Apr;85(4):951–952. doi: 10.1128/jb.85.4.951-952.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dilworth M. J., Kidby D. K. Localization of iron and leghaemoglobin in the legume root nodule by electron microscope autoradiography. Exp Cell Res. 1968 Jan;49(1):148–149. doi: 10.1016/0014-4827(68)90527-2. [DOI] [PubMed] [Google Scholar]
  7. Dixon R. O. Rhizobia (with particular reference to relationships with host plants). Annu Rev Microbiol. 1969;23:137–158. doi: 10.1146/annurev.mi.23.100169.001033. [DOI] [PubMed] [Google Scholar]
  8. FOTHERGILL P. G., CHILD J. H. COMPARATIVE STUDIES OF THE MINERAL NUTRITION OF THREE SPECIES OF PHYTOPHTHORA. J Gen Microbiol. 1964 Jul;36:49–66. doi: 10.1099/00221287-36-1-49. [DOI] [PubMed] [Google Scholar]
  9. Goodchild D. J., Bergersen F. J. Electron microscopy of the infection and subsequent development of soybean nodule cells. J Bacteriol. 1966 Jul;92(1):204–213. doi: 10.1128/jb.92.1.204-213.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gourret J. P., Fernandez-Arias H. Etude ultrastructurale et cytochimique de la différenciation des bactéroïdes de Rhizobium trifolii Dangeard dans les nodules de Trifolium repens L. Can J Microbiol. 1974 Aug;20(8):1169–1181. [PubMed] [Google Scholar]
  11. Gunning B. E. Lateral fusion of membranes in bacteroid-containing cells of leguminous root nodules. J Cell Sci. 1970 Jul;7(1):307–317. doi: 10.1242/jcs.7.1.307. [DOI] [PubMed] [Google Scholar]
  12. Hodges T. K., Leonard R. T. Purification of a plasma membrane-bound adenosine triphosphatase from plant roots. Methods Enzymol. 1974;32:392–406. doi: 10.1016/0076-6879(74)32039-3. [DOI] [PubMed] [Google Scholar]
  13. JORDAN D. C., GRINYER I., COULTER W. H. ELECTRON MICROSCOPY OF INFECTION THREADS AND BACTERIA IN YOUNG ROOT NODULES OF MEDICAGO SATIVA. J Bacteriol. 1963 Jul;86:125–137. doi: 10.1128/jb.86.1.125-137.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Omura T., Siekevitz P., Palade G. E. Turnover of constituents of the endoplasmic reticulum membranes of rat hepatocytes. J Biol Chem. 1967 May 25;242(10):2389–2396. [PubMed] [Google Scholar]
  15. Prasad D. N., De D. N. Ultrastructure of release of Rhizobium and formation of membrane envelope in root nodule. Microbios. 1971 Jul;4(13):13–20. [PubMed] [Google Scholar]
  16. Robertson J. G., Warburton M. P., Lyttleton P., Fordyce A. M., Bullivant S. Membranes in lupin root nodules. II. Preparation and properties of peribacteroid membranes and bacteroid envelope inner membranes from developing lupin nodules. J Cell Sci. 1978 Apr;30:151–174. doi: 10.1242/jcs.30.1.151. [DOI] [PubMed] [Google Scholar]
  17. Roland J. C., Lembi C. A., Morré D. J. Phosphotungstic acid-chromic acid as a selective electron-dense stain for plasma membranes of plant cells. Stain Technol. 1972 Jul;47(4):195–200. doi: 10.3109/10520297209116484. [DOI] [PubMed] [Google Scholar]
  18. SAHLMAN K. AN ELECTRON MICROSCOPE STUDY OF ROOT-HAIR INFECTION BY RHIZOBIUM. J Gen Microbiol. 1963 Dec;33:425–427. doi: 10.1099/00221287-33-3-425. [DOI] [PubMed] [Google Scholar]
  19. Tu J. C. Relationship between the membrane envelope of rhizobial bacteroids and the plasma membrane of the host cell as demonstrated by histochemical localization of adenyl cyclase. J Bacteriol. 1974 Sep;119(3):986–991. doi: 10.1128/jb.119.3.986-991.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tu J. C. Structural similarity of the membrane envelopes of rhizobial bacteroids and the host plasma membrane as revealed by freeze-fracturing. J Bacteriol. 1975 May;122(2):691–694. doi: 10.1128/jb.122.2.691-694.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Verma D. P., Bal A. K. Intracellular site of synthesis and localization of leghemoglobin in root nodules. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3843–3847. doi: 10.1073/pnas.73.11.3843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Verma D. P., Maclachlan G. A., Byrne H., Ewings D. Regulation and in vitro translation of messenger ribonucleic acid for cellulase from auxin-treated pea epicotyls. J Biol Chem. 1975 Feb 10;250(3):1019–1026. [PubMed] [Google Scholar]
  23. WACHSTEIN M., MEISEL E. Histochemistry of hepatic phosphatases of a physiologic pH; with special reference to the demonstration of bile canaliculi. Am J Clin Pathol. 1957 Jan;27(1):13–23. doi: 10.1093/ajcp/27.1.13. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES