Abstract
We have previously established that approximately 30% of the endothelial junctions in the pericytic venules of the mouse diaphragm are open to a gap of approximately 30--60 A, and are fully permeated by hemeundecapeptide (H11P) (mol diam approximately 20 A). To estimate the size limit for molecules that can permeate these junctions, we have administered graded tracers intravenously and studied their behavior at the level of pericytic venules in bipolar microvascular fields (BMFs) in the mouse diaphragm. Horseradish peroxidase (HRP) (mol diam approximately 50 A) permeated only approximately 50% of the open junctions of the venular endothelium. Outflow through venular junctions appeared to be modest since the tracer remained restricted to the perivenular spaces. Hemoglobin (Hb, mol diam 64 x 55 x 50 A) permeated only a few (less than 5%), and ferritin (mol diam 110 A), practically none, of the endothelial junctions of the pericytic venules. The findings suggest that under normal conditions the size limit for permeant molecules for open venular junctions is approximately 60 A. Replicas of freeze-fracture preparations from appropriate regions in BMF showed that the intercellular junctions of the venular endothelium have the same organization as previously described for the corresponding segments of the microvasculature in the omentum and mesentery: discontinuous creases or grooves either free of or marked by few intramembrane particles only. Administration of histamine (topically or systemically) and 5-hydroxytryptamine (5-HT) (topically) resulted in typical focal separations of the endothelial junctions and intramural deposits of large tracer particles (carbon black) in the postcapillary venules.
Full Text
The Full Text of this article is available as a PDF (7.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- GROTTE G. Passage of dextran molecules across the blood-lymph barrier. Acta Chir Scand Suppl. 1956;211:1–84. [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
- Hauck G. Permeability of the microvascular system. Bibl Anat. 1977;(15 Pt 1):202–205. [PubMed] [Google Scholar]
- Hauck G., Schröer H. Vitalmikroskopische Untersuchungen zur Lokalisation der Eiweisspermeabilität an der Endstrombahn von Warmblütern. Pflugers Arch. 1969;312(1):32–44. [PubMed] [Google Scholar]
- MAJNO G., PALADE G. E., SCHOEFL G. I. Studies on inflammation. II. The site of action of histamine and serotonin along the vascular tree: a topographic study. J Biophys Biochem Cytol. 1961 Dec;11:607–626. doi: 10.1083/jcb.11.3.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAJNO G., PALADE G. E. Studies on inflammation. 1. The effect of histamine and serotonin on vascular permeability: an electron microscopic study. J Biophys Biochem Cytol. 1961 Dec;11:571–605. doi: 10.1083/jcb.11.3.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Majno G., Shea S. M., Leventhal M. Endothelial contraction induced by histamine-type mediators: an electron microscopic study. J Cell Biol. 1969 Sep;42(3):647–672. doi: 10.1083/jcb.42.3.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pietra G. G., Szidon J. P., Carpenter H. A., Fishman A. P. Bronchial venular leakage during endotoxin shock. Am J Pathol. 1974 Dec;77(3):387–406. [PMC free article] [PubMed] [Google Scholar]
- Renkin E. M. Multiple pathways of capillary permeability. Circ Res. 1977 Dec;41(6):735–743. doi: 10.1161/01.res.41.6.735. [DOI] [PubMed] [Google Scholar]
- Simionescu M., Simionescu N., Palade G. E. Segmental differentiations of cell junctions in the vascular endothelium. The microvasculature. J Cell Biol. 1975 Dec;67(3):863–885. doi: 10.1083/jcb.67.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Siminoescu M., Palade G. E. Permeability of muscle capillaries to small heme-peptides. Evidence for the existence of patent transendothelial channels. J Cell Biol. 1975 Mar;64(3):586–607. doi: 10.1083/jcb.64.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. I. Bipolar microvascular fields. Microvasc Res. 1978 Jan;15(1):1–16. doi: 10.1016/0026-2862(78)90001-8. [DOI] [PubMed] [Google Scholar]
- Simionescu N., Simionescu M., Palade G. E. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. II. Pathways followed by microperoxidase across the endothelium. Microvasc Res. 1978 Jan;15(1):17–36. doi: 10.1016/0026-2862(78)90002-x. [DOI] [PubMed] [Google Scholar]
- Strum J. M., Junod A. F. Radioautographic demonstration of 5-hydroxytryptamine- 3 H uptake by pulmonary endothelial cells. J Cell Biol. 1972 Sep;54(3):456–467. doi: 10.1083/jcb.54.3.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takada M., Mori K. Spontaneous separation of the endothelial cell junctions of the venules in the large salivary glands of the intact mouse. Microvasc Res. 1971 Apr;3(2):204–206. doi: 10.1016/0026-2862(71)90023-9. [DOI] [PubMed] [Google Scholar]
- Wissig S. L., Williams M. C. Permeability of muscle capillaries to microperoxidase. J Cell Biol. 1978 Feb;76(2):341–359. doi: 10.1083/jcb.76.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]