Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Oct 1;79(1):263–267. doi: 10.1083/jcb.79.1.263

Identification of macrophage external membrane proteins and their possible role in cell adhesion

PMCID: PMC2110221  PMID: 701374

Abstract

Starch-activated mouse peritoneal macrophages (STpMAC) plated on plastic demonstrate the adhesive properties typical for activated pMAC: attaching as round cells and, within 15 min, spreading out with marginal membrane ruffles. These attached STpMAC were labeled by lactoperoxidase-catalysed 125I surface iodination, sodium dodecyl- sulfate-lysed, and the lysates electrophoresed on polyacrylamide gels which were examined by autoradiography. The STpMAC morphological phenotype correlates with the labeling of a particular protein (195,000, estimated mol wt). Normal pMAC (NpMAC), from unstimulated mice, do not spread and do not display the 195,000 band. Both pMAC band patterns, including the 195,000 band, are relatively resistant to trypsin digestion, as is pMAC adhesion itself trypsin-resistant. Neither class of pMAC exhibits fibronectin (Cell Adhesion Factor, LETS protein) which is a component in the adhesive matrix of cells forming trypsin-sensitive monolayers. When pMAC are tested against antifibronectin antibody, these cells do not give immunofluorescent staining. In summary, two functions in pMAC adhesion, enzyme resistance and the ability to spread, appear related to molecular properties distinctive for pMAC surface protein.

Full Text

The Full Text of this article is available as a PDF (832.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hynes R. O. Alteration of cell-surface proteins by viral transformation and by proteolysis. Proc Natl Acad Sci U S A. 1973 Nov;70(11):3170–3174. doi: 10.1073/pnas.70.11.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Pearlstein E., Hynes R. O., Franks L. M., Hemmings V. J. Surface proteins and fibrinolytic activity of cultured mammalian cells. Cancer Res. 1976 Apr;36(4):1475–1480. [PubMed] [Google Scholar]
  3. Wahl L. M., Wahl S. M., Mergenhagen S. E., Martin G. R. Collagenase production by endotoxin-activated macrophages. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3598–3601. doi: 10.1073/pnas.71.9.3598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Werb Z., Gordon S. Secretion of a specific collagenase by stimulated macrophages. J Exp Med. 1975 Aug 1;142(2):346–360. doi: 10.1084/jem.142.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES