Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Oct 1;79(1):121–131. doi: 10.1083/jcb.79.1.121

Persistence of an amine uptake system in cultured rat sympathetic neurons which use acetylcholine as their transmitter

PMCID: PMC2110229  PMID: 701368

Abstract

Cultures of dissociated rat superior cervical ganglion neurons (SCGN) were treated with the sympatholytic agent, guanethidine. When treated within the first couple of weeks in vitro, the neurons were rapidly destroyed. The cells grew less susceptible to the toxic effects of guanethidine with age in vitro. Moreover, the apparent affinity, Km, of the transport molecule for norepinephrine (NE) and guanethidine remained essentially unchanged between 2 and 7 wk in culture, as did the maximum velocity of transport (Vmax). This is at a time when previous studies have shown these neurons to be using acetylcholine (ACh) as their neurotransmitter. Cultures which were grown without supporting cells and from which cholinergic synaptic interactions were recorded physiologically were processed for autoradiography after incubation with [3H]NE. All cell bodies and processes seen had silver grains accumulated over them. These experiments show that sympathetic neurons in vitro maintain their amine uptake system relatively unchanged, even though they use ACh as their transmitter. The implications of these findings are discussed.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aiken J. W., Reit E. A comparison of the sensitivity to chemical stimuli of adrenergic and cholinergic neurons in the cat stellate ganglion. J Pharmacol Exp Ther. 1969 Oct;169(2):211–223. [PubMed] [Google Scholar]
  2. Bunge R. P., Wood P. Studies on the transplantation of spinal cord tissue in the rat. I. The development of a culture system for hemisections of embryonic spinal cord. Brain Res. 1973 Jul 27;57(2):261–276. doi: 10.1016/0006-8993(73)90135-2. [DOI] [PubMed] [Google Scholar]
  3. Burn J. H. Release of noradrenaline from sympathetic endings. Nature. 1971 May 28;231(5300):237–240. doi: 10.1038/231237a0. [DOI] [PubMed] [Google Scholar]
  4. Burnham P., Raiborn C., Varon S. Replacement of nerve-growth factor by ganglionic non-neuronal cells for the survival in vitro of dissociated ganglionic neurons. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3556–3560. doi: 10.1073/pnas.69.12.3556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burnstock G., Evans B., Gannon B. J., Heath J. W., James V. A new method of destroying adrenergic nerves in adult animals using guanethidine. Br J Pharmacol. 1971 Oct;43(2):295–301. [PMC free article] [PubMed] [Google Scholar]
  6. Burton H., Bunge R. P. A comparison of the uptake and release of [3H]norepinephrine in rat autonomic and sensory ganglia in tissue culture. Brain Res. 1975 Oct 24;97(1):157–162. doi: 10.1016/0006-8993(75)90924-5. [DOI] [PubMed] [Google Scholar]
  7. CASS R., SPRIGGS T. L. Tissue amine levels and sympathetic blockade after guanethidine and bretylium. Br J Pharmacol Chemother. 1961 Dec;17:442–450. doi: 10.1111/j.1476-5381.1961.tb01131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. CHANG C. C., COSTA E., BRODIE B. B. INTERACTION OF GUANETHIDINE WITH ADRENERGIC NEURONS. J Pharmacol Exp Ther. 1965 Mar;147:303–312. [PubMed] [Google Scholar]
  9. Furshpan E. J., MacLeish P. R., O'Lague P. H., Potter D. D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proc Natl Acad Sci U S A. 1976 Nov;73(11):4225–4229. doi: 10.1073/pnas.73.11.4225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HAMBERGER B., MALMFORS T., NORBERG K. A., SACHS C. UPTAKE AND ACCUMULATION OF CATECHOLAMINES IN PERIPHERAL ADRENERGIC NEURONS OF RESERPINIZED ANIMALS, STUDIED WITH A HISTOCHEMICAL METHOD. Biochem Pharmacol. 1964 Jun;13:841–844. doi: 10.1016/0006-2952(64)90026-7. [DOI] [PubMed] [Google Scholar]
  11. Haga T., Noda H. Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta. 1973 Jan 26;291(2):564–575. doi: 10.1016/0005-2736(73)90508-7. [DOI] [PubMed] [Google Scholar]
  12. Haga T. Synthesis and release of ( 14 C)acetylcholine in synaptosomes. J Neurochem. 1971 Jun;18(6):781–798. doi: 10.1111/j.1471-4159.1971.tb12008.x. [DOI] [PubMed] [Google Scholar]
  13. Heath J. W., Burnstock G. Selectivity of neuronal degeneration produced by chronic guanethidine treatment. J Neurocytol. 1977 Aug;6(4):397–405. doi: 10.1007/BF01178225. [DOI] [PubMed] [Google Scholar]
  14. Heath J. W., Evans B. K., Burnstock G. Axon retraction following guanethidine treatment. Studies of sympathetic neurons in vivo. Z Zellforsch Mikrosk Anat. 1973;146(4):439–451. doi: 10.1007/BF02347174. [DOI] [PubMed] [Google Scholar]
  15. Heath J. W., Evans B. K., Gannon B. J., Burnstock G., James V. B. Degeneration of adrenergic neurons following guanethidine treatment: an ultrastructural study. Virchows Arch B Cell Pathol. 1972;11(2):182–197. doi: 10.1007/BF02889397. [DOI] [PubMed] [Google Scholar]
  16. Heath J. W., Hill C. E., Burnstock G. Axon retraction following guanethidine treatment: studies of sympathetic neurons in tissue culture. J Neurocytol. 1974 Jun;3(2):263–276. doi: 10.1007/BF01098393. [DOI] [PubMed] [Google Scholar]
  17. Hendley E. D., Snyder S. H., Fauley J. J., LaPidus J. B. Stereoselectivity of catecholamine uptake by brain synaptosomes: studies with ephedrine, methylphenidate and phenyl-2-piperidyl carbinol. J Pharmacol Exp Ther. 1972 Oct;183(1):103–116. [PubMed] [Google Scholar]
  18. Hill C. E., Hendry I. A. Development of neurons synthesizing noradrenaline and acetylcholine in the superior cervical ganglion of the rat in vivo and in vitro. Neuroscience. 1977;2(5):741–749. doi: 10.1016/0306-4522(77)90027-6. [DOI] [PubMed] [Google Scholar]
  19. Horn A. S., Coyle J. T., Snyder S. H. Catecholamine uptake by synaptosomes from rat brain. Structure-activity relationships of drugs with differential effects on dopamine and norepinephrine neurons. Mol Pharmacol. 1971 Jan;7(1):66–80. [PubMed] [Google Scholar]
  20. Huston L. J., Golko D. S., Paton D. M. Effect of neuronal uptake inhibitors on the adrenergic-neuron blockade produced by guanethidine in rabbit vas deferens. Can J Physiol Pharmacol. 1977 Jun;55(3):609–614. doi: 10.1139/y77-084. [DOI] [PubMed] [Google Scholar]
  21. Johnson E. M., Jr, Aloe L. Suppression of the in vitro and in vivo cytotoxic effects of guanethidine in sympathetic neurons by nerve growth factor. Brain Res. 1974 Dec 13;81(3):519–532. doi: 10.1016/0006-8993(74)90848-8. [DOI] [PubMed] [Google Scholar]
  22. Johnson E. M., Jr, Cantor E., Douglas J. R., Jr Biochemical and functional evaluation of the sympathectomy produced by the administration of guanethidine to newborn rats. J Pharmacol Exp Ther. 1975 May;193(2):503–512. [PubMed] [Google Scholar]
  23. Johnson E. M., Jr, O'Brien F. Evaluation of the permanent sympathectomy produced by the administration of guanethidine to adult rats. J Pharmacol Exp Ther. 1976 Jan;196(1):53–61. [PubMed] [Google Scholar]
  24. Johnson M., Ross D., Meyers M., Rees R., Bunge R., Wakshull E., Burton H. Synaptic vesicle cytochemistry changes when cultured sympathetic neurones develop cholinergic interactions. Nature. 1976 Jul 22;262(5566):308–310. doi: 10.1038/262308a0. [DOI] [PubMed] [Google Scholar]
  25. Ko C. P., Burton H., Johnson M. I., Bunge R. P. Synaptic transmission between rat superior cervical ganglion neurons in dissociated cell cultures. Brain Res. 1976 Dec 3;117(3):461–485. doi: 10.1016/0006-8993(76)90753-8. [DOI] [PubMed] [Google Scholar]
  26. Mains R. E., Patterson P. H. Primary cultures of dissociated sympathetic neurons. III. Changes in metabolism with age in culture. J Cell Biol. 1973 Nov;59(2 Pt 1):361–366. doi: 10.1083/jcb.59.2.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. RICHARDSON K. C. THE FINE STRUCTURE OF THE ALBINO RABBIT IRIS WITH SPECIAL REFERENCE TO THE IDENTIFICATION OF ADRENERGIC AND CHOLINERGIC NERVES AND NERVE ENDINGS IN ITS INTRINSIC MUSCLES. Am J Anat. 1964 Mar;114:173–205. doi: 10.1002/aja.1001140202. [DOI] [PubMed] [Google Scholar]
  28. Rahn K. H., Dayton P. G. Studies on the metabolism of guanethidine in hypertensive patients. Biochem Pharmacol. 1969 Aug;18(8):1809–1816. doi: 10.1016/0006-2952(69)90275-5. [DOI] [PubMed] [Google Scholar]
  29. Rees R., Bunge R. P. Morphological and cytochemical studies of synapses formed in culture between isolated rat superior cervical ganglion neurons. J Comp Neurol. 1974 Sep 1;157(1):1–11. doi: 10.1002/cne.901570102. [DOI] [PubMed] [Google Scholar]
  30. Reese T. S., Karnovsky M. J. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol. 1967 Jul;34(1):207–217. doi: 10.1083/jcb.34.1.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reichardt L. F., Patterson P. H. Neurotransmitter synthesis and uptake by isolated sympathetic neurones in microcultures. Nature. 1977 Nov 10;270(5633):147–151. doi: 10.1038/270147a0. [DOI] [PubMed] [Google Scholar]
  32. Tsan M. F., Berlin R. D. Effect of phagocytosis on membrane transport of nonelectrolytes. J Exp Med. 1971 Oct 1;134(4):1016–1035. doi: 10.1084/jem.134.4.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. White T. D., Paton D. M. Effects of external Na + and K + on the initial rates of noradrenaline uptake by synaptosomes prepared from rat brain. Biochim Biophys Acta. 1972 Apr 14;266(1):116–127. doi: 10.1016/0005-2736(72)90126-5. [DOI] [PubMed] [Google Scholar]
  34. Yamauchi A., Lever J. D., Kemp K. W. Catecholamine loading and depletion in the rat superior cervical ganglion. A formol fluorescence and enzyme histochemical study with numerical assessments. J Anat. 1973 Feb;114(Pt 2):271–282. [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES