Abstract
Mitotic PtK1 cells, lysed at anaphase into a carbowax 20 M Brij 58 solution, continue to move chromosomes toward the spindle poles and to move the spindle poles apart at 50% in vivo rates for 10 min. Chromosome movements can be blocked by adding metabolic inhibitors to the lysis medium and inhibition of movement can be reversed by adding ATP to the medium. Vanadate at micromolar levels reversibly inhibits dynein ATPase activity and movement of demembranated flagella and cilia. It does not affect glycerinated myofibril contraction or myosin ATPase activty at less than millimolar concentrations. Vanadate at 10-- 100 micron reversibly inhibits anaphase movement of chromosomes and spindle elongation. After lysis in vanadate, spindles lose their fusiform appearance and become more barrel shaped. In vitro microtubule polymerization is insensitive to vanadate.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cantley L. C., Jr, Josephson L., Warner R., Yanagisawa M., Lechene C., Guidotti G. Vanadate is a potent (Na,K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem. 1977 Nov 10;252(21):7421–7423. [PubMed] [Google Scholar]
- Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]