Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Nov 1;79(2):329–341. doi: 10.1083/jcb.79.2.329

Heterogeneity in sensitivity to cleavage by the restriction endonucleases ECORI and HindIII of circular kinetoplast DNA molecules of Crithidia acanthocephali

PMCID: PMC2110243  PMID: 721893

Abstract

Kinetoplast DNA (kDNA) of the protozoan Crithidia acanthocephali consists mainly of an association of approximately 27,000 covalently closed, 0.8-micron (1.58 X 10(6) daltons) circular molecules apparently held together in a particular structural configuration by topological interlocking. The sensitivities of circular kDNA molecules to the restriction endonucleases EcoRI and HindIII have been studied using agarose gel electrophoresis and electron microscopy. Digestion with EcoRI or HindIII of collections of single circular molecules obtained from sonicated kDNA associations resulted in a single cleavage of 9.3 and 12% of the molecules, respectively. Digestion of intact kDNA associations with EcoRI or HindIII resulted in cleavage of 9.2 and 10.4%, respectively, of the component circular molecules, but not in detectable disruption of the characteristic structure of the associations. Analysis of the products of sequential digestion of kDNA with the two enzymes indicated that approximately 8% of the circular molecules each contain a single site sensitive to EcoRI and a single site sensitive to HindIII; 1.5-3% contain only an EcoRI-sensitive site; 3-4% contain only a HindIII-sensitive site; and the remainder (approximately 86%) are insensitive to either enzyme. Further, data obtained from sequential digestion experiments and from studies of the partial denaturation products of the circular molecules digested with EcoRI or HindIII indicated that when they occur the EcoRI site and the HindIII site are each at a unique position in all molecules, 10-13% of the circular contour length apart. Similar digestion products were found for kDNAs from different cloned organisms, suggesting that the four different kinds of circular molecules, in regard to EcoRI and HindIII sensitivity, are found in similar proportions in the kDNA association of different organisms.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borst P., Fase-Fowler F., Steinert M., Van Assel S. Maxi-circles in the kinetoplast DNA of Trypanosoma mega. Exp Cell Res. 1977 Nov;110(1):167–173. doi: 10.1016/0014-4827(77)90283-x. [DOI] [PubMed] [Google Scholar]
  2. Clayton D. A., Davis R. W., Vinograd J. Homology and structural relationships between the dimeric and monomeric circular forms of mitochondrial DNA from human leukemic leukocytes. J Mol Biol. 1970 Jan 28;47(2):137–153. doi: 10.1016/0022-2836(70)90335-9. [DOI] [PubMed] [Google Scholar]
  3. Depew D. E., Wang J. C. Conformational fluctuations of DNA helix. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4275–4279. doi: 10.1073/pnas.72.11.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fouts D. L., Manning J. E., Wolstenholme D. R. Physicochemical properties of kinetoplast DNA from Crithidia acanthocephali. Crithidia luciliae, and Trypanosoma lewisi. J Cell Biol. 1975 Nov;67(2PT1):378–399. doi: 10.1083/jcb.67.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Inman R. B. A denaturation map of the lambda phage DNA molecule determined by electron microscopy. J Mol Biol. 1966 Jul;18(3):464–476. doi: 10.1016/s0022-2836(66)80037-2. [DOI] [PubMed] [Google Scholar]
  6. Keller W. Determination of the number of superhelical turns in simian virus 40 DNA by gel electrophoresis. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4876–4880. doi: 10.1073/pnas.72.12.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kleisen C. M., Borst P. Sequence heterogeneity of the mini-circles of kinetoplast DNA of Crithidia luciliae and evidence for the presence of a component more complex than mini-circle DNA in the kinetoplast network. Biochim Biophys Acta. 1975 Nov 4;407(4):473–478. doi: 10.1016/0005-2787(75)90301-9. [DOI] [PubMed] [Google Scholar]
  8. Kleisen C. M., Weislogel P. O., Fonck K., Borst P. The structure of kinetoplast DNA. 2. Characterization of a novel component of high complexity present in the kinetoplast DNA network of Crithidia luciliae. Eur J Biochem. 1976 Apr 15;64(1):153–160. doi: 10.1111/j.1432-1033.1976.tb10283.x. [DOI] [PubMed] [Google Scholar]
  9. Kleisen M. C., Borst P., Weijers P. J. The structure of kinetoplast DNA. 1. The mini-circles of Crithidia lucilae are heterogeneous in base sequence. Eur J Biochem. 1976 Apr 15;64(1):141–151. doi: 10.1111/j.1432-1033.1976.tb10282.x. [DOI] [PubMed] [Google Scholar]
  10. Laurent M., Steinert M. Electron microscopy of kinetoplastic DNA from Trypanosoma mega. Proc Natl Acad Sci U S A. 1970 Jun;66(2):419–424. doi: 10.1073/pnas.66.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mantel N., Boyer H. W., Goodman H. M. Mapping simian virus 40 mutants by construction of partial heterozygotes. J Virol. 1975 Sep;16(3):754–757. doi: 10.1128/jvi.16.3.754-757.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Renger H. C., Wolstenholme D. R. Kinetoplast deoxyribonucleic acid of the hemoflagellate Trypanosoma lewisi. J Cell Biol. 1970 Dec;47(3):689–702. doi: 10.1083/jcb.47.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Renger H. C., Wolstenholme D. R. The form and structure of kinetoplast DNA of Crithidia. J Cell Biol. 1972 Aug;54(2):346–364. doi: 10.1083/jcb.54.2.346. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Riou G., Delain E. Electron microscopy of the circular kinetoplastic DNA from Trypanosoma cruzi: occurrence of catenated forms. Proc Natl Acad Sci U S A. 1969 Jan;62(1):210–217. doi: 10.1073/pnas.62.1.210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Riou G., Yot P. Etude de l'Adn kinétoplastique de Trypansoma cruzi à l'aide d'endonucléases de restriction. C R Acad Sci Hebd Seances Acad Sci D. 1975 Jun 16;280(23):2701–2704. [PubMed] [Google Scholar]
  16. Weislogel P. O., Hoeijmakers J. H., Fairlamb A. H., Kleisen C. M., Borst P. Characterization of kinetoplast DNA networks from the insect trypanosome Crithidia luciliae. Biochim Biophys Acta. 1977 Sep 20;478(2):167–179. doi: 10.1016/0005-2787(77)90180-0. [DOI] [PubMed] [Google Scholar]
  17. Wesley R. D., Simpson L. Studies on kinetoplast DNA. 3. Kinetic complexity of kinetoplast and nuclear DNA from Leishmania tarentolae. Biochim Biophys Acta. 1973 Sep 7;319(3):267–276. doi: 10.1016/0005-2787(73)90165-2. [DOI] [PubMed] [Google Scholar]
  18. Wesley R. D., Simpson L. Studies on kinetoplast DNA. II. Biophysical properties of minicircular DNA from Leishmania tarentolae. Biochim Biophys Acta. 1973 Sep 7;319(3):254–266. doi: 10.1016/0005-2787(73)90164-0. [DOI] [PubMed] [Google Scholar]
  19. Wolstenholme D. R., Renger H. C., Manning J. E., Fouts D. L. Kinetoplast DNA of Crithidia. J Protozool. 1974 Nov;21(5):622–631. doi: 10.1111/j.1550-7408.1974.tb03716.x. [DOI] [PubMed] [Google Scholar]
  20. Wolstonholme D. R., Kirschner R. G., Gross N. J. Heart denaturation studies of rat liver mitrochondrial DNA. A denaturation map and changes in molecular configurations. J Cell Biol. 1972 May;53(2):393–406. doi: 10.1083/jcb.53.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES