Abstract
The localization of Ca-accumulating structures in the longitudinal body wall muscle (LBWM) of the opisthobranch mollusc Dolabella auricularia and their role in the contraction-relaxation cycle were studied by fixing the LBWM fibers at rest and during mechanical response to 400 mM K or to 10(-4)--10(-3) M acetylcholine in a 1% OsO4 solution containing 2% K pyroantimonate. In the resting fibers, electron-opaque pyroantimonate precipitate was mostly localized at the peripheral structures, i.e., along the inner surface of the plasma membrane, at the membrane of the surface tubules, and at the sarcoplasmic reticulum. In the fibers fixed during mechanical activity, the precipitate was diffusely distributed in the myoplasm in the form of numerous particles with corresponding decrease in the amount of the precipitate at the peripheral structures. Electron-probe X-ray microanalysis showed the presence of Ca in the precipitate, indicating that the precipitate may serve as a measure of Ca localization. These results are in accord with the view that, in the LBWM, the Ca stored in the peripheral structures is released into the myoplasm to activate the contractile mechanism.
Full Text
The Full Text of this article is available as a PDF (4.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Atsumi S., Sugi H. Localization of calcium-accumulating structures in the anterior byssal retractor muscle of Mytilus edulis and their role in the regulation of active and catch contractions. J Physiol. 1976 Jun;257(3):549–560. doi: 10.1113/jphysiol.1976.sp011384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bulger R. E. Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissue. J Cell Biol. 1969 Jan;40(1):79–94. doi: 10.1083/jcb.40.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jonas L., Zelck U. The subcellular calcium distribution in the smooth muscle cells of the pig coronary artery. Exp Cell Res. 1974 Dec;89(2):352–358. doi: 10.1016/0014-4827(74)90800-3. [DOI] [PubMed] [Google Scholar]
- Klein R. L., Yen S. S., Thureson-Klein A. Critique on the K-pyroantimonate method for semiquantitative estimation of cations in conjunction with electron microscopy. J Histochem Cytochem. 1972 Jan;20(1):65–78. doi: 10.1177/20.1.65. [DOI] [PubMed] [Google Scholar]
- Lane B. P., Martin E. Electron probe analysis of cationic species in pyroantimonate precipitates in epon-embedded tissue. J Histochem Cytochem. 1969 Feb;17(2):102–106. doi: 10.1177/17.2.102. [DOI] [PubMed] [Google Scholar]
- Legato M. J., Langer G. A. The subcellular localization of calcium ion in mammalian myocardium. J Cell Biol. 1969 May;41(2):401–423. doi: 10.1083/jcb.41.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popescu L. M., Diculescu I. Calcium in smooth muscle sarcoplasmic reticulum in situ. Conventional and X-ray analytical electron microscopy. J Cell Biol. 1975 Dec;67(3):911–918. doi: 10.1083/jcb.67.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popescu L. M., Diculescu I., Zelck U., Ionescu N. Ultrastructural distribution of calcium in smooth muscle cells of guinea-pig taenia coli. A correlated electron microscopic and quantitative study. Cell Tissue Res. 1974;154(3):357–378. doi: 10.1007/BF00223732. [DOI] [PubMed] [Google Scholar]
- Somlyo A. P., Somlyo A. V., Devine C. E., Peters P. D., Hall T. A. Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J Cell Biol. 1974 Jun;61(3):723–742. doi: 10.1083/jcb.61.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somlyo A. V., Somlyo A. P. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science. 1971 Nov 26;174(4012):955–958. doi: 10.1126/science.174.4012.955. [DOI] [PubMed] [Google Scholar]
- Stössel W., Zebe E. Zur intracellulären Regulation der Kontraktionsaktivität. Vergleichende Untersuchungen an verscheidenen Muskeltypen. Pflugers Arch. 1968;302(1):38–56. doi: 10.1007/BF00586781. [DOI] [PubMed] [Google Scholar]