Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Nov 1;79(2):427–443. doi: 10.1083/jcb.79.2.427

Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis

PMCID: PMC2110254  PMID: 569157

Abstract

Complexes of plasma membrane segments with desmosomes and attached tonofilaments were separated from the stratum spinosum cells of calf muzzle by means of moderately alkaline buffers of low ionic strength and mechanical homogenization. These structures were further fractionated by the use of various treatments including sonication, sucrose gradient centrifugation, and extraction with buffers containing high concentrations of salt, urea, citric acid, or detergents. Subfractions enriched in desmosome-tonofilament-complexes and tonofilament fragments were studied in detail. The desmosome structures such as the midline, the trilaminar membrane profile, and the desmosomal plaque appeared well preserved and were notably resistant to the various treatments employed. Fractions containing desmosome- tonofilament complexes were invariably dominated by the nonmembranous proteins of the tonofilaments which appeared as five major polypeptide bands (apparent molecular weights: 48,000; 51,000; 58,000; 60,000; 68,000) present in molar ratios of approx. 2:1:1:2:2. Four of these polypeptide bands showed electrophoretic mobilities similar to those of prekeratin polypeptides from bovine hoof. However, the largest polypeptide (68,000 mol wt) migrated significantly less in polyacrylamide gels than the largest component of the hoof prekeratin (approximately 63,000 mol wt). In addition, a series of minor bands, including carbohydrate-containing proteins, were identified and concluded to represent constituents of the desmosomal membrane. The analysis of protein-bound carbohydrates (total 270 microgram/mg phospholipid in desmosome-enriched subfractions) showed the presence of relatively high amounts of glucosamine, mannose, galactose, and sialic acids. These data as well as the lipid composition (e.g., high ratio of cholesterol to phospholipids, relatively high contents of sphingomyelin and gangliosides, and fatty acid pattern) indicate that the desmosomal membrane is complex in protein and lipid composition and has a typical plasma membrane character. The similarity of the desmosome-associated tonofilaments to prekeratin filaments and other forms of intermediate- sized filaments is discussed.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baden H. P., Lee L. D., Kubilus J. The fibrous proteins of stratum corneum. J Invest Dermatol. 1976 Nov;67(5):573–576. doi: 10.1111/1523-1747.ep12541671. [DOI] [PubMed] [Google Scholar]
  2. Bernstein L. H., Wollman S. H. Association of mitochondria with desmosomes in the rat thyroid gland. J Ultrastruct Res. 1975 Oct;53(1):87–92. doi: 10.1016/s0022-5320(75)80088-8. [DOI] [PubMed] [Google Scholar]
  3. Brysk M. M., Gray R. H., Bernstein I. A. Tonofilament protein from newborn rat epidermis. Isolation, localization, and biosynthesis of marker of epidermal differentiation. J Biol Chem. 1977 Mar 25;252(6):2127–2133. [PubMed] [Google Scholar]
  4. CRESTFIELD A. M., MOORE S., STEIN W. H. The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J Biol Chem. 1963 Feb;238:622–627. [PubMed] [Google Scholar]
  5. Caspar D. L., Goodenough D. A., Makowski L., Phillips W. C. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J Cell Biol. 1977 Aug;74(2):605–628. doi: 10.1083/jcb.74.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooke P. A filamentous cytoskeleton in vertebrate smooth muscle fibers. J Cell Biol. 1976 Mar;68(3):539–556. doi: 10.1083/jcb.68.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crewther W. G., Fraser R. D., Lennox F. G., Lindley H. The chemistry of keratins. Adv Protein Chem. 1965;20:191–346. doi: 10.1016/s0065-3233(08)60390-3. [DOI] [PubMed] [Google Scholar]
  8. Culbertson V. B., Freedberg I. M. Mammalian epidermal keratin: isolation and characterization of the alpha-helical proteins from newborn rat. Biochim Biophys Acta. 1977 Jan 25;490(1):178–191. doi: 10.1016/0005-2795(77)90118-0. [DOI] [PubMed] [Google Scholar]
  9. Edel-Harth S., Dreyfus H., Bosch P., Rebel G., Urban P. F., Mandel P. Gangliosides of whole retina and rod outer segments. FEBS Lett. 1973 Sep 15;35(2):284–288. doi: 10.1016/0014-5793(73)80305-9. [DOI] [PubMed] [Google Scholar]
  10. Elias P. M., Friend D. S. Vitamin-A-induced mucous metaplasia. An in vitro system for modulating tight and gap junction differentiation. J Cell Biol. 1976 Feb;68(2):173–188. doi: 10.1083/jcb.68.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  12. Farquhar M. G., Palade G. E. Cell junctions in amphibian skin. J Cell Biol. 1965 Jul;26(1):263–291. doi: 10.1083/jcb.26.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franke W. W., Deumling B., Baerbelermen, Jarasch E. D., Kleinig H. Nuclear membranes from mammalian liver. I. Isolation procedure and general characterization. J Cell Biol. 1970 Aug;46(2):379–395. doi: 10.1083/jcb.46.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fraser R. D., Gillespie J. M. Wool structure and biosynthesis. Nature. 1976 Jun 24;261(5562):650–654. doi: 10.1038/261650a0. [DOI] [PubMed] [Google Scholar]
  15. Green H. Terminal differentiation of cultured human epidermal cells. Cell. 1977 Jun;11(2):405–416. doi: 10.1016/0092-8674(77)90058-7. [DOI] [PubMed] [Google Scholar]
  16. Jarasch E. D., Bruder G., Keenan T. W., Franke W. W. Redox constituents in milk fat globule membranes and rough endoplasmic reticulum from lactating mammary gland. J Cell Biol. 1977 Apr;73(1):223–241. doi: 10.1083/jcb.73.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jones L. N. Studies on microfibrils from alpha-keratin. Biochim Biophys Acta. 1976 Oct 28;446(2):515–524. doi: 10.1016/0005-2795(76)90018-0. [DOI] [PubMed] [Google Scholar]
  18. Keenan T. W., Huang C. M. Membranes of mammary gland. VI. Lipid and protein composition of Golgi apparatus and rough endoplasmic reticulum from bovine mammary gland. J Dairy Sci. 1972 Nov;55(11):1586–1596. doi: 10.3168/jds.S0022-0302(72)85725-4. [DOI] [PubMed] [Google Scholar]
  19. Keenan T. W., Morré D. J., Olson D. E., Yunghans W. N., Patton S. Biochemical and morphological comparison of plasma membrane and milk fat globule membrane from bovine mammary gland. J Cell Biol. 1970 Jan;44(1):80–93. doi: 10.1083/jcb.44.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Keenan T. W., Morré D. J. Phospholipid class and fatty acid composition of golgi apparatus isolated from rat liver and comparison with other cell fractions. Biochemistry. 1970 Jan 6;9(1):19–25. doi: 10.1021/bi00803a003. [DOI] [PubMed] [Google Scholar]
  21. Kelly D. E. Fine structure of desmosomes. , hemidesmosomes, and an adepidermal globular layer in developing newt epidermis. J Cell Biol. 1966 Jan;28(1):51–72. doi: 10.1083/jcb.28.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kelly D. E., Shienvold F. L. The desmosome: fine structural studies with freeze-fracture replication and tannic acid staining of sectioned epidermis. Cell Tissue Res. 1976 Sep 20;172(3):309–323. doi: 10.1007/BF00399514. [DOI] [PubMed] [Google Scholar]
  23. Kleinig H., Zentgraf H., Comes P., Stadler J. Nuclear membranes and plasma membranes from hen erythrocytes. II. Lipid composition. J Biol Chem. 1971 May 10;246(9):2996–3000. [PubMed] [Google Scholar]
  24. Klenk H. D., Choppin P. W. Glycosphingolipids of plasma membranes of cultured cells and an enveloped virus (SV5) grown in these cells. Proc Natl Acad Sci U S A. 1970 May;66(1):57–64. doi: 10.1073/pnas.66.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Landay M. A., Schroeder H. E. Quantitative electron microscopic analysis of the stratified epithelium of normal human buccal mucosa. Cell Tissue Res. 1977 Feb 15;177(3):383–405. doi: 10.1007/BF00220313. [DOI] [PubMed] [Google Scholar]
  28. Lazarides E., Hubbard B. D. Immunological characterization of the subunit of the 100 A filaments from muscle cells. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4344–4348. doi: 10.1073/pnas.73.12.4344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lee L. D., Baden H. P., Kunilus J., Fleming B. F. Immunology of epidermal fibrous proteins. J Invest Dermatol. 1976 Oct;67(4):521–525. doi: 10.1111/1523-1747.ep12664546. [DOI] [PubMed] [Google Scholar]
  30. Lee L. D., Baden H. P. Organisation of the polypeptide chains in mammalian keratin. Nature. 1976 Nov 25;264(5584):377–379. doi: 10.1038/264377a0. [DOI] [PubMed] [Google Scholar]
  31. Matoltsy A. G. Desmosomes, filaments, and keratohyaline granules: their role in the stabilization and keratinization of the epidermis. J Invest Dermatol. 1975 Jul;65(1):127–142. doi: 10.1111/1523-1747.ep12598093. [DOI] [PubMed] [Google Scholar]
  32. Meldolesi J. Studies on cytoplasmic membrane fractions from guinea pig pancreas. Adv Cytopharmacol. 1971 May;1:145–157. [PubMed] [Google Scholar]
  33. Millward G. R. The substructure of alpha-keratin microfibrils. J Ultrastruct Res. 1970 May;31(3):349–355. doi: 10.1016/s0022-5320(70)90137-1. [DOI] [PubMed] [Google Scholar]
  34. Morré D. J., Keenan T. W., Mollenhauer H. H. Golgi apparatus function in membrane transformations and product compartmentalization: studies with cell fractions isolated from rat liver. Adv Cytopharmacol. 1971 May;1:159–182. [PubMed] [Google Scholar]
  35. Orwin D. F., Thomson R. W., Flower N. E. Plasma membrane differentiations of keratinizing cells of the wool follicle. II. Desmosomes. J Ultrastruct Res. 1973 Oct;45(1):15–29. doi: 10.1016/s0022-5320(73)90029-4. [DOI] [PubMed] [Google Scholar]
  36. Osborn M., Franke W. W., Weber K. Visualization of a system of filaments 7-10 nm thick in cultured cells of an epithelioid line (Pt K2) by immunofluorescence microscopy. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2490–2494. doi: 10.1073/pnas.74.6.2490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Skerrow C. J., Matoltsy A. G. Isolation of epidermal desmosomes. J Cell Biol. 1974 Nov;63(2 Pt 1):515–523. doi: 10.1083/jcb.63.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Small J. V., Sobieszek A. Studies on the function and composition of the 10-NM(100-A) filaments of vertebrate smooth muscle. J Cell Sci. 1977 Feb;23:243–268. doi: 10.1242/jcs.23.1.243. [DOI] [PubMed] [Google Scholar]
  39. Starger J. M., Goldman R. D. Isolation and preliminary characterization of 10-nm filaments from baby hamster kidney (BHK-21) cells. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2422–2426. doi: 10.1073/pnas.74.6.2422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sun T. T., Green H. Cultured epithelial cells of cornea, conjunctiva and skin: absence of marked intrinsic divergence of their differentiated states. Nature. 1977 Oct 6;269(5628):489–493. doi: 10.1038/269489a0. [DOI] [PubMed] [Google Scholar]
  41. Therien H. M., Mushynski W. E. Isolation of synaptic junctional complexes of high structural integrity from rat brain. J Cell Biol. 1976 Dec;71(3):807–822. doi: 10.1083/jcb.71.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thomas J. O., Kornberg R. D. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2626–2630. doi: 10.1073/pnas.72.7.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES