Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1978 Dec 1;79(3):788–801. doi: 10.1083/jcb.79.3.788

Two functionally distinct pools of glycosaminoglycan in the substrate adhesion site of murine cells

PMCID: PMC2110261  PMID: 569661

Abstract

Footpad adhesion sites pinch off from the rest of the cell surface during EGTA-mediated detachment of normal or virus-transformed murine cells from their tissue culture substrates. In these studies, highly purified trypsin and testicullar hyaluronidase were used to investigate the selective destruction or solubilization of proteins and polysaccharides in this substrate-attached material (SAM). Trypsin- mediated detachment of cells or trypsinization of SAM after EGTA- mediated detachment of cells resulted in the following changes in SAM composition: (a) solubilization of 50-70% of the glycosaminoglycan polysaccharide with loss of only a small fraction of the protein, (b) selective loss of one species of glycosaminoglycan-associated protein in longterm radiolabeled preparations, (c) no selective loss of the LETS glycoprotein or cytoskeletal proteins in longterm radiolabeled preparations, and (d) selective loss of one species of glycosaminoglycan-associated protein, a protion of the LETS glycoprotein, and proteins Cd (mol wt 47,000 and Ce' (mol wt 39,000) in short term radiolabeled preparations. Digestion of SAM with testicular hyaluronidase resulted in: (a) almost complete solubilization of the hyaluronate and chondroitin sulfate moieties from long term radiolabeled SAM with minimal loss of heparan sulfate, (b) solubilization of a small portion of the LETS glycoprotein and the cytoskeletal proteins from longterm radiolabeled SAM, (c) resistance to solubilization of protein and polysaccharide in reattaching cell SAM which contains principally heparan sulfate, and (d) complete solubilization of the LETS glycoprotein in short term radiolabeled preparations with no loss of cytoskeletal proteins. Thus, there appear to be two distinct pools of LETS in SAM, one associated in some unknown fashion with hyaluronate-chondroitin sulfate complexes, and a second associated with some other component in SAM, perhaps heparan sulfate. These data, together with other results, suggest that the cell- substrate adhesion process may be mediated principally by a heparan sulfate--LETS complex and that hyaluronate-chondroitin sulfate complexes may be important in the detachability of cells from the serum- coated substrate by destabilizing LETS matrices at posterior footpad adhesion sites.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali I. U., Mautner V., Lanza R., Hynes R. O. Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein. Cell. 1977 May;11(1):115–126. doi: 10.1016/0092-8674(77)90322-1. [DOI] [PubMed] [Google Scholar]
  2. Atherly A. G., Barnhart B. J., Kraemer P. M. Growth and biochemical characteristics of a detachment variant of CHO cells. J Cell Physiol. 1977 Mar;90(3):375–385. doi: 10.1002/jcp.1040900302. [DOI] [PubMed] [Google Scholar]
  3. Cohn R. H., Cassiman J. J., Bernfield M. R. Relationship of transformation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycan. J Cell Biol. 1976 Oct;71(1):280–294. doi: 10.1083/jcb.71.1.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Culp L. A., Black P. H. Release of macromolecules from BALB-c mouse cell lines treated with chelating agents. Biochemistry. 1972 May 23;11(11):2161–2172. doi: 10.1021/bi00761a024. [DOI] [PubMed] [Google Scholar]
  5. Culp L. A., Buniel J. F. Substrate-attached serum and cell proteins in adhesion of mouse fibroblasts. J Cell Physiol. 1976 May;88(1):89–106. doi: 10.1002/jcp.1040880111. [DOI] [PubMed] [Google Scholar]
  6. Culp L. A. Electrophoretic analysis of substrate-attached proteins from normal and virus-transformed cells. Biochemistry. 1976 Sep 7;15(18):4094–4104. doi: 10.1021/bi00663a028. [DOI] [PubMed] [Google Scholar]
  7. Culp L. A. Molecular composition and origin of substrate-attached material from normal and virus-transformed cells. J Supramol Struct. 1976;5(2):239–255. doi: 10.1002/jss.400050210. [DOI] [PubMed] [Google Scholar]
  8. Dunham J. S., Hynes R. O. Differences in the sulfated macromolecules synthesized by normal and transformed hamster fibroblasts. Biochim Biophys Acta. 1978 Jan 19;506(2):242–255. doi: 10.1016/0005-2736(78)90395-4. [DOI] [PubMed] [Google Scholar]
  9. Engvall E., Ruoslahti E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int J Cancer. 1977 Jul 15;20(1):1–5. doi: 10.1002/ijc.2910200102. [DOI] [PubMed] [Google Scholar]
  10. Grinnell F. Cell spreading factor. Occurrence and specificity of action. Exp Cell Res. 1976 Oct 1;102(1):51–62. doi: 10.1016/0014-4827(76)90298-6. [DOI] [PubMed] [Google Scholar]
  11. Hardingham T. E., Muir H. Hyaluronic acid in cartilage and proteoglycan aggregation. Biochem J. 1974 Jun;139(3):565–581. doi: 10.1042/bj1390565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris A. Location of cellular adhesions to solid substrata. Dev Biol. 1973 Nov;35(1):97–114. doi: 10.1016/0012-1606(73)90009-2. [DOI] [PubMed] [Google Scholar]
  13. Heinegård D., Hascall V. C. Aggregation of cartilage proteoglycans. 3. Characteristics of the proteins isolated from trypsin digests of aggregates. J Biol Chem. 1974 Jul 10;249(13):4250–4256. [PubMed] [Google Scholar]
  14. Hynes R. O. Cell surface proteins and malignant transformation. Biochim Biophys Acta. 1976 Apr 30;458(1):73–107. doi: 10.1016/0304-419x(76)90015-9. [DOI] [PubMed] [Google Scholar]
  15. Kraemer P. M. Heparin releases heparan sulfate from the cell surface. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1334–1340. doi: 10.1016/0006-291x(77)91438-3. [DOI] [PubMed] [Google Scholar]
  16. Lindahl U., Bäckström G., Jansson L., Hallén A. Biosynthesis of heparin. II. Formation of sulfamino groups. J Biol Chem. 1973 Oct 25;248(20):7234–7241. [PubMed] [Google Scholar]
  17. Lindahl U., Hök M., Bäckström G., Jacobsson I., Riesenfeld J., Malmström A., Rodén L., Feingold D. S. Structure and biosynthesis of heparin-like polysaccharides. Fed Proc. 1977 Jan;36(1):19–24. [PubMed] [Google Scholar]
  18. Mautner V., Hynes R. O. Surface distribution of LETS protein in relation to the cytoskeleton of normal and transformed cells. J Cell Biol. 1977 Dec;75(3):743–768. doi: 10.1083/jcb.75.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pearlstein E. Plasma membrane glycoprotein which mediates adhesion of fibroblasts to collagen. Nature. 1976 Aug 5;262(5568):497–500. doi: 10.1038/262497a0. [DOI] [PubMed] [Google Scholar]
  20. Poste G., Greenham L. W., Mallucci L., Reeve P., Alexander D. J. The study of cellular "microexudates" by ellipsometry and their relationship to the cell coat. Exp Cell Res. 1973 Apr;78(2):303–313. doi: 10.1016/0014-4827(73)90073-6. [DOI] [PubMed] [Google Scholar]
  21. Revel J. P., Hoch P., Ho D. Adhesion of culture cells to their substratum. Exp Cell Res. 1974 Mar 15;84(1):207–218. doi: 10.1016/0014-4827(74)90398-x. [DOI] [PubMed] [Google Scholar]
  22. Revel J. P., Wolken K. Electronmicroscope investigations of the underside of cells in culture. Exp Cell Res. 1973 Mar 30;78(1):1–14. doi: 10.1016/0014-4827(73)90031-1. [DOI] [PubMed] [Google Scholar]
  23. Roblin R., Albert S. O., Gelb N. A., Black P. H. Cell surface changes correlated with density-dependent growth inhibition. Glycosaminoglycan metabolism in 3T3, SV3T3, and con A selected revertant cells. Biochemistry. 1975 Jan 28;14(2):347–357. doi: 10.1021/bi00673a022. [DOI] [PubMed] [Google Scholar]
  24. Shields R., Pollock K. The adhesion of BHK and PyBHK cells to the substratum. Cell. 1974 Sep;3(1):31–38. doi: 10.1016/0092-8674(74)90034-8. [DOI] [PubMed] [Google Scholar]
  25. Stathakis N. E., Mosesson M. W. Interactions among heparin, cold-insoluble globulin, and fibrinogen in formation of the heparin-precipitable fraction of plasma. J Clin Invest. 1977 Oct;60(4):855–865. doi: 10.1172/JCI108840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. TAYLOR A. C. Attachment and spreading of cells in culture. Exp Cell Res. 1961;Suppl 8:154–173. doi: 10.1016/0014-4827(61)90346-9. [DOI] [PubMed] [Google Scholar]
  27. Teng N. N., Chen L. B. Thrombin-sensitive surface protein of cultured chick embryo cells. Nature. 1976 Feb 19;259(5544):578–580. doi: 10.1038/259578a0. [DOI] [PubMed] [Google Scholar]
  28. Underhill C. B., Keller J. M. Density-dependent changes in the amount of sulfated glycosaminoglycans associated with mouse 3T3 cells. J Cell Physiol. 1976 Sep;89(1):53–63. doi: 10.1002/jcp.1040890106. [DOI] [PubMed] [Google Scholar]
  29. Yamada K. M., Schlesinger D. H., Kennedy D. W., Pastan I. Characterization of a major fibroblast cell surface glycoprotein. Biochemistry. 1977 Dec 13;16(25):5552–5559. doi: 10.1021/bi00644a025. [DOI] [PubMed] [Google Scholar]
  30. Yamada K. M., Weston J. A. Isolation of a major cell surface glycoprotein from fibroblasts. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3492–3496. doi: 10.1073/pnas.71.9.3492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamada K. M., Yamada S. S., Pastan I. Cell surface protein partially restores morphology, adhesiveness, and contact inhibition of movement to transformed fibroblasts. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1217–1221. doi: 10.1073/pnas.73.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yamada K. M., Yamada S. S., Pastan I. The major cell surface glycoprotein of chick embryo fibroblasts is an agglutinin. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3158–3162. doi: 10.1073/pnas.72.8.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yamagata T., Saito H., Habuchi O., Suzuki S. Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem. 1968 Apr 10;243(7):1523–1535. [PubMed] [Google Scholar]
  34. Yaoi Y., Kanaseki T. Role of microexudate carpet in cell division. Nature. 1972 Jun 2;237(5353):283–285. doi: 10.1038/237283a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES