Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Jan 1;80(1):10–20. doi: 10.1083/jcb.80.1.10

Reconstitution of lipid vesicles associated with HVJ (Sendai virus) sikes. Purification and some properties of vesicles containing nontoxic fragment A of diphtheria toxin

PMCID: PMC2110294  PMID: 217880

Abstract

A mixture of HVJ (Sendai virus) spike proteins, the nontoxic fragment A of diphtheria toxin, lecithin, and cholesterol was solubilized in sucrose solution containing a nonionic neutral detergent. The liposomal vesicles which formed on removal of the detergent by dialysis were purified by gel filtration and centrifugation on a sucrose gradient. The resulting purified vesicles had hemagglutinating activity, hemolytic activity and, after solubilization, the enzymic activity of fragment A. The vesicles had no cell fusion activity. Electron microscopy showed that both the outside and inside of membranes of the vesicles were associated with the spikes. When the vesicles were freeze- fractured, no large aggregates of particles were seen on either face. Such fragment A-containing lipid vesicles (liposomes) with HVJ spikes bound to mamalian cell membrane and released their fragment A into the cytoplasm causing cell death. Neither fragment A-containing liposomes without spikes nor empty liposomes with spikes were toxic.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Honjo T., Nishizuka Y., Hayaishi O. Diphtheria toxin-dependent adenosine diphosphate ribosylation of aminoacyl transferase II and inhibition of protein synthesis. J Biol Chem. 1968 Jun 25;243(12):3553–3555. [PubMed] [Google Scholar]
  2. Laird W., Groman N. Isolation and characterization of tox mutants of corynebacteriophage beta. J Virol. 1976 Jul;19(1):220–227. doi: 10.1128/jvi.19.1.220-227.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. OKADA Y., NISHIDA S., TADOKORO J. Correlation between the hemagglutination titer and the virus particle number of HVJ. Biken J. 1961 Sep;4:209–213. [PubMed] [Google Scholar]
  4. Pagano R. E., Takeichi M. Adhesion of phospholipid vesicles to Chinese hamster fibroblasts. Role of cell surface proteins. J Cell Biol. 1977 Aug;74(2):531–546. doi: 10.1083/jcb.74.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Redwood W. R., Jansons V. K., Patel B. C. Lectin-receptor interactions in liposomes. Biochim Biophys Acta. 1975 Oct 17;406(3):347–361. doi: 10.1016/0005-2736(75)90015-2. [DOI] [PubMed] [Google Scholar]
  6. Uchida T., Gill D. M., Pappenheimer A. M., Jr Mutation in the structural gene for diphtheria toxin carried by temperate phage . Nat New Biol. 1971 Sep 1;233(35):8–11. doi: 10.1038/newbio233008a0. [DOI] [PubMed] [Google Scholar]
  7. Yu J., Branton D. Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effects of spectrin-actin association. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3891–3895. doi: 10.1073/pnas.73.11.3891. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES