Abstract
The surface saccharide composition of collagenase-dispersed pancreatic cells from adult guinea pig and rat glands was examined by using eight lectins and their ferritin conjugates: Concanavalin A (ConA); Lens culinaris (LCL); Lotus tetragonolobus (LTL); Ricinus communis agglutinins I and II (RCA I, RCA II); Soybean agglutinin (SBA); Ulex europeus lectin (UEL); and wheat germ agglutinin (WGA). Binding studies of iodinated lectins and lectin-ferritin conjugates both revealed one population of saturable, high-affinity receptor sites on the total cell population (approximately 95% acinar cells). Electron microscopy, however, revealed differences in lectin-ferritin binding to the plasmalemma of acinar, centroacinar, and endocrine cells. Whereas acinar cells bound heavily all lectin conjugates, endocrine and centroacinar cells were densely labeled only by ConA, LCL, WGA, and RCA I, and possessed few receptors for LTL, UEL, and SBA. Endocrine and centroacinar cells could be differentiated from each other by using RCA II, which binds to centroacinar cells but not to endocrine cells. Some RCA II receptors appeared to be glycolipids because they were extracted by ethanol and chloroform-methanol in contrast to WGA receptors which resisted solvent treatment but were partly removed by papain digestion. RCA I receptors were affected by neither treatment. The apparent absence of receptors for SBA on endocrine and centroacinar cells, and for RCA II on endocrine cells, was reversed by neuraminidase digestion, which suggested masking of lectin receptors by sialic acid. The absence of LTL and UEL receptors on endocrine and centroacinar cells was not reversed by neuraminidase. We suggest that the differential lectin- binding patterns observed on acinar, centroacinar, and endocrine cells from the adult pancreas surface-carbohydrate-developmental programs expressed during morphogenesis and cytodifferentiation of the gland.
Full Text
The Full Text of this article is available as a PDF (7.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amsterdam A., Jamieson J. D. Studies on dispersed pancreatic exocrine cells. II. Functional characteristics of separated cells. J Cell Biol. 1974 Dec;63(3):1057–1073. doi: 10.1083/jcb.63.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amsterdam A., Solomon T. E., Jamieson J. D. Sequential dissociation of the exocrine pancreas into lobules, acini, and individual cells. Methods Cell Biol. 1978;20:361–378. doi: 10.1016/s0091-679x(08)62028-2. [DOI] [PubMed] [Google Scholar]
- Boldt D. H., Speckart S. F., Richards R. L., Alving C. R. Interactions of lectins with glycolipids in liposomes. Biochem Biophys Res Commun. 1977 Jan 10;74(1):208–214. doi: 10.1016/0006-291x(77)91395-x. [DOI] [PubMed] [Google Scholar]
- Deleers M., Poss A., Ruysschaert J. M. Specific interaction between concanavalin A and glycolipids incorporated into planar bilayer membranes. Biochem Biophys Res Commun. 1976 Sep 20;72(2):709–713. doi: 10.1016/s0006-291x(76)80097-6. [DOI] [PubMed] [Google Scholar]
- Dionne L., Beaudoin A. R. Exocytosis in mammalian cells. I. Interaction of Concanavalin A and wheat germ agglutinin with isolated acinar cells. Exp Cell Res. 1977 Jul;107(2):285–291. doi: 10.1016/0014-4827(77)90351-2. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Galli P., Brenna A., Camilli de P., Meldolesi J. Extracellular calcium and the organization of tight junctions in pancreatic acinar cells. Exp Cell Res. 1976 Apr;99(1):178–183. doi: 10.1016/0014-4827(76)90694-7. [DOI] [PubMed] [Google Scholar]
- Irimura T., Nakajima M., Hirano H., Osawa T. Distribution of ferritin-conjugated lectins on sialidase-treated membranes of human erythrocytes. Biochim Biophys Acta. 1975 Dec 1;413(2):192–201. doi: 10.1016/0005-2736(75)90103-0. [DOI] [PubMed] [Google Scholar]
- Ito S. Structure and function of the glycocalyx. Fed Proc. 1969 Jan-Feb;28(1):12–25. [PubMed] [Google Scholar]
- Ito S. The enteric surface coat on cat intestinal microvilli. J Cell Biol. 1965 Dec;27(3):475–491. doi: 10.1083/jcb.27.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KARNOVSKY M. J. Simple methods for "staining with lead" at high pH in electron microscopy. J Biophys Biochem Cytol. 1961 Dec;11:729–732. doi: 10.1083/jcb.11.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu Rev Biochem. 1976;45:217–237. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. The structure of a phytohemagglutinin receptor site from human erythrocytes. J Biol Chem. 1970 May 25;245(10):2536–2545. [PubMed] [Google Scholar]
- MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
- Mersel M., Benenson A., Doljanski F. Lactoperoxidase-catalyzed iodination of surface membrane lipids. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1166–1171. doi: 10.1016/0006-291x(76)91025-1. [DOI] [PubMed] [Google Scholar]
- Naiki M., Fong J., Ledeen R., Marcus D. M. Structure of the human erythrocyte blood group P1 glycosphingolipid. Biochemistry. 1975 Nov 4;14(22):4831–4837. doi: 10.1021/bi00693a009. [DOI] [PubMed] [Google Scholar]
- Nakada H., Funakoshi I., Yamashina I. Changes in the lectin binding capacities of hepatoma cells after treatment with chondroitinase. Biochem Biophys Res Commun. 1977 Nov 7;79(1):280–284. doi: 10.1016/0006-291x(77)90092-4. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L., Blaustein J., Etzler M. E. Characterization of two plant lectins from Ricinus communis and their quantitative interaction with a murine lymphoma. Biochemistry. 1974 Jan 1;13(1):196–204. doi: 10.1021/bi00698a029. [DOI] [PubMed] [Google Scholar]
- Nicolson G. L. The interactions of lectins with animal cell surfaces. Int Rev Cytol. 1974;39:89–190. doi: 10.1016/s0074-7696(08)60939-0. [DOI] [PubMed] [Google Scholar]
- Read B. D., Demel R. A., Wiegandt H., van Deenen L. L. Specific interaction of concanavalin A with glycolipid monolayers. Biochim Biophys Acta. 1977 Oct 17;470(2):325–330. doi: 10.1016/0005-2736(77)90110-9. [DOI] [PubMed] [Google Scholar]
- Redwood W. R., Polefka T. G. Lectin-receptor interactions in liposomes. II. Interaction of wheat germ agglutinin with phosphatidylcholine liposomes containing incorporated monosialoganglioside. Biochim Biophys Acta. 1976 Dec 14;455(3):631–643. doi: 10.1016/0005-2736(76)90037-7. [DOI] [PubMed] [Google Scholar]
- Rendi R., Kuettner C. A., Gordon J. A. Agglutination by lectins of liposomes prepared from total lipids of erythrocytes. Biochem Biophys Res Commun. 1976 Oct 4;72(3):1071–1076. doi: 10.1016/s0006-291x(76)80241-0. [DOI] [PubMed] [Google Scholar]
- Rosen S. W., Hughes R. C. Effects of neuraminidase on lectin binding by wild-type and ricin-resistant strains of hamster fibroblasts. Biochemistry. 1977 Nov 1;16(22):4908–4915. doi: 10.1021/bi00641a026. [DOI] [PubMed] [Google Scholar]
- STECK T. L., HOELZLWALLACH D. F. THE BINDING OF KIDNEY-BEAN PHYTOHEMAGGLUTININ BY EHRLICH ASCITES CARCINOMA. Biochim Biophys Acta. 1965 Mar 8;97:510–522. [PubMed] [Google Scholar]
- Skutelsky E., Farquhar M. G. Variations in distribution of con A receptor sites and anionic groups during red blood cell differentiation in the rat. J Cell Biol. 1976 Oct;71(1):218–231. doi: 10.1083/jcb.71.1.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]