Abstract
Higher-order chromatin fibers (200--300 A in diameter) are reproducibly released from nuclei after lysis in the absence of formalin and/or detergent. Electron microscope analysis of these fibers shows that they are composed of a continuous array of closely apposed nucleosomes which display several distinct packing patterns. Analysis of the organization of nucleosomes within these arrays and their distribution along long stretches of chromatin suggest that the basic 100-A chromatin fiber is not packed into discrete superbeads and is not folded into a uniform solenoid within the native 250-A fiber. Furthermore, because similar higher-order fibers have been visualized in metaphase chromosomes, the existence of this fiber class appears to be independent of the degree of in vivo chromatin condensation.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Carlson R. D., Olins D. E. Chromatin model calculations: Arrays of spherical nu bodies. Nucleic Acids Res. 1976 Jan;3(1):89–100. doi: 10.1093/nar/3.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olins A. L., Olins D. E. Spheroid chromatin units (v bodies). Science. 1974 Jan 25;183(4122):330–332. doi: 10.1126/science.183.4122.330. [DOI] [PubMed] [Google Scholar]
- Rattner J. B., Hamkalo B. A. Higher order structure in metaphase chromosomes. I. The 250 A fiber. Chromosoma. 1978 Dec 6;69(3):363–372. doi: 10.1007/BF00332139. [DOI] [PubMed] [Google Scholar]