Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 May 1;81(2):316–335. doi: 10.1083/jcb.81.2.316

Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei, and cytoplasm

PMCID: PMC2110316  PMID: 468907

Abstract

Electron probe analysis of dry cryosections was used to determine the composition of the cytoplasm and organelles of rabbit portal-anterior mesenteric vein (PAMV) smooth muscle. All analytical values given are in mmol/kg wt +/- SEM. Cytoplasmic concentrations in normal, resting muscles were: K, 611 +/- 1.7; Na, 167 +/- 2.7; Cl, 278 +/- 1.0; Mg, 36 +/- 1.1; Ca, 1.9 +/- 0.5; and P, 247 +/- 1.1. Hence, the sum of intracellular Na + K exceeded cytoplasmic Cl by 500 mmol/kg dry wt, while the calculated total, nondiffusible solute was approximately 50 mmol/kg. Cytoplasmic K and Cl were increased in smooth muscles incubated in solutions containing an excess (80 mM) of KCl. Nuclear and cytoplasmic Na and Ca concentrations were not significantly different. The mitochondrial Ca content in normal fibers was low, 0.8 +/- 0.5, and there was no evidence of mitochondrial Ca sequestration in muscles frozen after a K contracture lasint 30 min. Transmitochondrial gradients of K, Na, and Cl were small (0.9--1.2). In damaged fibers, massive mitochondrial Ca accumulation of up to 2 mol/kg dry wt in granule form and associated with P could be demonstrated. Our findings suggest (a) that the nonDonnan distribution of Cl in smooth muscle is not caused by sequestration in organelles, and that considerations of osmotic equilibrium and electroneutrality suggest the existence of unidentified nondiffusible anions in smooth muscle, (b) that nuclei do not contain concentrations of Na or Ca in excess of cytoplasmic levels, (c) that mitochondria in PAMV smooth muscle do not play a major role in regulating cytoplasmic Ca during physiological levels of contraction but can be massively Ca loaded in damaged cells, and (d) that the in situ transmitochondrial gradients of K, Na, and Cl do not show these ions to be distributed according to a large electromotive Donnan force.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Crompton M., Moser R., Lüdi H., Carafoli E. The interrelations between the transport of sodium and calcium in mitochondria of various mammalian tissues. Eur J Biochem. 1978 Jan 2;82(1):25–31. doi: 10.1111/j.1432-1033.1978.tb11993.x. [DOI] [PubMed] [Google Scholar]
  3. Debbas G., Hoffman L., Landon E. J., Hurwitz L. Electron microscopic localization of calcium in vascular smooth muscle. Anat Rec. 1975 Aug;182(4):447–471. doi: 10.1002/ar.1091820405. [DOI] [PubMed] [Google Scholar]
  4. Devine C. E., Somlyo A. V., Somlyo A. P. Sarcoplasmic reticulum and excitation-contraction coupling in mammalian smooth muscles. J Cell Biol. 1972 Mar;52(3):690–718. doi: 10.1083/jcb.52.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dick D. A. Proceedings: The distribution of Na, K and Cl in Bufo bufo oocytes measured by electron microprobe analysis. J Physiol. 1976 Jun;258(2):102P–103P. [PubMed] [Google Scholar]
  6. Dörge A., Rick R., Gehring K., Thurau K. Preparation of freeze-dried cryosections for quantitative X-ray microanalysis of electrolytes in biological soft tissues. Pflugers Arch. 1978 Jan 31;373(1):85–97. doi: 10.1007/BF00581153. [DOI] [PubMed] [Google Scholar]
  7. Friedman S. M., Mar M., Nakashima M. Lithium substitution analysis of Na and K phases in a small artery. Blood Vessels. 1974;11(1-2):55–64. doi: 10.1159/000157999. [DOI] [PubMed] [Google Scholar]
  8. Friedman S. M. The effects of external sodium substitution on cell sodium and potassium in vascular smooth muscle. J Physiol. 1977 Aug;270(1):195–208. doi: 10.1113/jphysiol.1977.sp011946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gonzalez-Serratos H., Somlyo A. V., McClellan G., Shuman H., Borrero L. M., Somlyo A. P. Composition of vacuoles and sarcoplasmic reticulum in fatigued muscle: electron probe analysis. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1329–1333. doi: 10.1073/pnas.75.3.1329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gupta B. L., Berridge M. J., Hall T. A., Moreton R. B. Electron microprobe and ion-selective microelectrode studies of fluid secretion in the salivary glands of Calliphora. J Exp Biol. 1978 Feb;72:261–284. doi: 10.1242/jeb.72.1.261. [DOI] [PubMed] [Google Scholar]
  11. Gupta B. L., Hall T. A., Naftalin R. J. Microprobe measurement of Na, K and Cl concentration profiles in epithelial cells and intercellular spaces of rabbit ileum. Nature. 1978 Mar 2;272(5648):70–73. doi: 10.1038/272070a0. [DOI] [PubMed] [Google Scholar]
  12. Hall T. A., Gupta B. L. Bean-induced loss of organic mass under electronmicroprobe conditions. J Microsc. 1974 Mar;100(2):177–188. doi: 10.1111/j.1365-2818.1974.tb03927.x. [DOI] [PubMed] [Google Scholar]
  13. Jones A. W., Miller L. A. Ion transport in tonic and phasic vascular smooth muscle and changes during deoxycorticosterone hypertension. Blood Vessels. 1978;15(1-3):83–92. doi: 10.1159/000158155. [DOI] [PubMed] [Google Scholar]
  14. Jones A. W., Somlyo A. P., Somlyo A. V. Potassium accumulation in smooth muscle and associated ultrastructural changes. J Physiol. 1973 Jul;232(2):247–273. doi: 10.1113/jphysiol.1973.sp010268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kao C. Y., Nishiyama A. Ion concentrations and membrane potentials of myometrium during recovery from cold. Am J Physiol. 1969 Aug;217(2):525–531. doi: 10.1152/ajplegacy.1969.217.2.525. [DOI] [PubMed] [Google Scholar]
  16. Lechene C. P. Electron probe microanalysis: its present, its future. Am J Physiol. 1977 May;232(5):F391–F396. doi: 10.1152/ajprenal.1977.232.5.F391. [DOI] [PubMed] [Google Scholar]
  17. Lechene C. P., Warner R. R. Ultramicroanalysis: x-ray spectrometry by electron probe excitation. Annu Rev Biophys Bioeng. 1977;6:57–85. doi: 10.1146/annurev.bb.06.060177.000421. [DOI] [PubMed] [Google Scholar]
  18. Ling G. N., Ochsenfeld M. M. Studies on ion accumulation in muscle cells. J Gen Physiol. 1966 Mar;49(4):819–843. doi: 10.1085/jgp.49.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Macknight A. D., Leaf A. Regulation of cellular volume. Physiol Rev. 1977 Jul;57(3):510–573. doi: 10.1152/physrev.1977.57.3.510. [DOI] [PubMed] [Google Scholar]
  20. Maloff B. L., Scordilis S. P., Reynolds C., Tedeschi H. Membrane potentials and resistances of giant mitochondria. Metabolic dependence and the effects of valinomycin. J Cell Biol. 1978 Jul;78(1):199–213. doi: 10.1083/jcb.78.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mitchell P. Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: power transmission by proticity. Biochem Soc Trans. 1976;4(3):399–430. doi: 10.1042/bst0040399. [DOI] [PubMed] [Google Scholar]
  22. Moore R. D., Morrill G. A. A possible mechanism for concentrating sodium and potassium in the cell nucleus. Biophys J. 1976 May;16(5):527–533. doi: 10.1016/S0006-3495(76)85707-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palmer L. G., Century T. J., Civan M. M. Activity coefficients of intracellular Na+ and K+ during development of frog oocytes. J Membr Biol. 1978 Apr 20;40(1):25–38. doi: 10.1007/BF01909737. [DOI] [PubMed] [Google Scholar]
  24. Pieri C., Nagy I. Z., Nagy V. Z., Giuli C., Bertoni-Freddari C. Energy dispersive x-ray microanalysis of the electrolytes in biological bulk specimen. II. Age-dependent alterations in the monovalent ion contents of cell nucleus and cytoplasm in rat liver and brain cells. J Ultrastruct Res. 1977 Jun;59(3):320–331. doi: 10.1016/s0022-5320(77)90042-9. [DOI] [PubMed] [Google Scholar]
  25. Saetersdal T. S., Myklebust R., Berg Justesen N. P., Engedal H., Olsen W. C. Calcium containing particles in mitochondria of heart muscle cells as shown by cryo-ultramicrotomy and X-ray microanalysis. Cell Tissue Res. 1977 Jul 26;182(1):17–31. doi: 10.1007/BF00222051. [DOI] [PubMed] [Google Scholar]
  26. Saubermann A. J., Echlin P. The preparation, examination and analysis of frozen hydrated tissue sections by scanning transmission electron microscopy and x-ray microanalysis. J Microsc. 1975 Nov;105(2):155–191. doi: 10.1111/j.1365-2818.1975.tb04048.x. [DOI] [PubMed] [Google Scholar]
  27. Sevéus L., Brdiczka D., Barnard T. On the occurence and composition of dense particles in mitochondria in ultrathin frozen dry sections. Cell Biol Int Rep. 1978 Mar;2(2):155–162. doi: 10.1016/0309-1651(78)90036-x. [DOI] [PubMed] [Google Scholar]
  28. Shuman H., Somlyo A. V., Somlyo A. P. Quantitative electron probe microanalysis of biological thin sections: methods and validity. Ultramicroscopy. 1976 Sep-Oct;1(4):317–339. doi: 10.1016/0304-3991(76)90049-8. [DOI] [PubMed] [Google Scholar]
  29. Somlyo A. P., Somlyo A. V., Devine C. E., Peters P. D., Hall T. A. Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J Cell Biol. 1974 Jun;61(3):723–742. doi: 10.1083/jcb.61.3.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Somlyo A. P., Somlyo A. V. Vascular smooth muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol Rev. 1968 Dec;20(4):197–272. [PubMed] [Google Scholar]
  31. Somlyo A. V., Vinall P., Somlyo A. P. Excitation-contraction coupling and electrical events in two types of vascular smooth muscle. Microvasc Res. 1969 Oct;1(4):354–373. doi: 10.1016/0026-2862(69)90014-4. [DOI] [PubMed] [Google Scholar]
  32. Walker J. L., Brown H. M. Intracellular ionic activity measurements in nerve and muscle. Physiol Rev. 1977 Oct;57(4):729–778. doi: 10.1152/physrev.1977.57.4.729. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES