Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 May 1;81(2):382–395. doi: 10.1083/jcb.81.2.382

Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431

PMCID: PMC2110321  PMID: 313931

Abstract

We have prepared a conjugate of epidermal growth factor (EGF) and ferritin that retains substantial binding affinity for cell receptors and is biologically active. Glutaraldehyde-activated EGF was covalently linked to ferritin to produce a conjugate that contained EGF and ferritin in a 1:1 molar ratio. The conjugate was separated from free ferritin by affinity chromatography using antibodies to EGF. Monolayers of human epithelioid carcinoma cells (A-431) were incubated with EGF:ferritin at 4 degrees C and processed for transmission electron microscopy. Under these conditions, approximately 6 X 10(5) molecules of EGF:ferritin bound to the plasma membrane of each cell. In the presence of excess native EGF, the number of bound ferritin particles was reduced by 99%, indicating that EGF:ferritin binds specifically to cellular EGF receptors. At 37 degrees C, cell-bound EGF:ferritin rapidly redistributed in the plane of the plasma membrane to form small groups that were subsequently internalized into pinocytic vesicles. By 2.5 min at 37 degrees C, 32% of the cell-bound EGF:ferritin was localized in vesicles. After 2.5 min, there was a decrease in the proportion of conjugate in vesicles with a concomitant accumulation of EGF:ferritin in multivesicular bodies. By 30 min, 84% of the conjugate was located in structures morphologically identified as multivesicular bodies or lysosomes. These results are consistent with other morphological and biochemical studies utilizing 125I-EGF and fluorescein-conjugated EGF.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Brown M. S., Goldstein J. L. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell. 1977 Mar;10(3):351–364. doi: 10.1016/0092-8674(77)90022-8. [DOI] [PubMed] [Google Scholar]
  2. Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carpenter G., King L., Jr, Cohen S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature. 1978 Nov 23;276(5686):409–410. doi: 10.1038/276409a0. [DOI] [PubMed] [Google Scholar]
  4. Das M., Fox C. F. Molecular mechanism of mitogen action: processing of receptor induced by epidermal growth factor. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2644–2648. doi: 10.1073/pnas.75.6.2644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haigler H., Ash J. F., Singer S. J., Cohen S. Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3317–3321. doi: 10.1073/pnas.75.7.3317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Savage C. R., Jr, Inagami T., Cohen S. The primary structure of epidermal growth factor. J Biol Chem. 1972 Dec 10;247(23):7612–7621. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES