Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Feb 1;80(2):427–443. doi: 10.1083/jcb.80.2.427

Binding and uptake of 125I-insulin into rat liver hepatocytes and endothelium. An in vivo radioautographic study

PMCID: PMC2110337  PMID: 457750

Abstract

Electron microscope radioautography has been used to study hormone- receptor interaction. At intervals of 3, 10, and 20 min after the injection of 125I-insulin, free hormone was separated from bound hormone by whole body perfusion with modified Ringer's solution. The localization of bound hormone, fixed in situ by perfusion with glutaraldehyde, was determined. At 3 min, 125I-insulin has been shown to be exclusively localized to the hepatocyte plasmalemma (Bergeron et al., 1977, Proc. Natl. Acad. Sci. U. S. A., 74:5051--5055). In the present study, quantitation indicated that 10(5) receptors were present per cell and distributed equally along the sinusoidal and lateral segments of the hepatocyte plasmalemma. At later times, label was found in the Golgi region. At 10 min, both secretory elements of the Golgi apparatus and lysosome-like vacuoles were labeled, and at 20 min the label was especially concentrated over the latter vacuoles. Acid phosphatase cytochemistry showed that the vacuoles did not react and therefore were presumed not to be lysosomal. These Golgi vacuoles may constitute a compartment involved in the initial degradation and/or site of action of the hormone. Control experiments were carried out at all time intervals and consisted of parallel injections of radiolabeled insulin with excess unlabeled hormone. At all times in controls, label was diminished over hepatocytes and was found primarily over endothelial cells and within the macropinocytotic vesicles and dense bodies of these cells. Kupffer cells and lipocytes were unlabeled after the injection of 125I-insulin with or without excess unlabeled insulin.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander C. A., Hamilton R. L., Havel R. J. Subcellular localization of B apoprotein of plasma lipoproteins in rat liver. J Cell Biol. 1976 May;69(2):241–263. doi: 10.1083/jcb.69.2.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bergeron J. J., Levine G., Sikstrom R., O'Shaughnessy D., Kopriwa B., Nadler N. J., Posner B. I. Polypeptide hormone binding sites in vivo: initial localization of 125I-labeled insulin to hepatocyte plasmalemma as visualized by electron microscope radioautography. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5051–5055. doi: 10.1073/pnas.74.11.5051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Doty S. B., Smith C. E., Hand A. R., Oliver C. Inorganic trimetaphosphatase as a histochemical marker for lysosomes in light and electron microscopy. J Histochem Cytochem. 1977 Dec;25(12):1381–1384. doi: 10.1177/25.12.200672. [DOI] [PubMed] [Google Scholar]
  4. Izzo J. L., Bartlett J. W., Roncone A., Izzo M. J., Bale W. F. Physiological processes and dynamics in the disposition of small and large doses of biologically active and inactive 131-I-insulins in the rat. J Biol Chem. 1967 May 25;242(10):2343–2355. [PubMed] [Google Scholar]
  5. Novikoff P. M., Yam A. Sites of lipoprotein particles in normal rat hepatocytes. J Cell Biol. 1978 Jan;76(1):1–11. doi: 10.1083/jcb.76.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Weibel E. R., Stäubli W., Gnägi H. R., Hess F. A. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol. 1969 Jul;42(1):68–91. doi: 10.1083/jcb.42.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES