Abstract
Ca++-Mg++-dependent ATPase and calsequestrin, the major intrinsic and extrinsic proteins, respectively, of the sarcoplasmic reticulum, were localized in cryostat sections of adult rat skeletal muscle by immunofluorescent staining and phase-contrast microscopy. Relatively high concentrations of both the ATPase and calsequestrin were found in fast-twitch myofibers while a very low concentration of the ATPase and a moderate concentration of calsequestrin were found in slow-twitch myofibers. These findings are consistent with previous biochemical studies of the isolated sarcoplasmic reticulum of slow-twitch and fast- twitch mammalian muscles. The distribution of the ATPase in muscle fibers is distinctly different from that of calsequestrin. While calsequestrin is present only near the interface between the I- and A- band regions of the sarcomere, the ATPase is found throughout the I- band region as well as in the center of the A-band region. In comparing these results with in situ ultrastructural studies of the distribution of sarcoplasmic reticulum in fast-twitch muscle, it appears that the ATPase is rather uniformly distributed throughout the sarcoplasmic reticulum while calsequestrin is almost exclusively confined to those regions of the membrane system which correspond to terminal cisternae. Fluorescent staining with these antisera was not observed in vascular smooth muscle cells present in the cryostat sections of the mammalian skeletal muscle used in this study.
Full Text
The Full Text of this article is available as a PDF (3.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Close R. I. Dynamic properties of mammalian skeletal muscles. Physiol Rev. 1972 Jan;52(1):129–197. doi: 10.1152/physrev.1972.52.1.129. [DOI] [PubMed] [Google Scholar]
- Eisenberg B. R., Kuda A. M. Discrimination between fiber populations in mammalian skeletal muscle by using ultrastructural parameters. J Ultrastruct Res. 1976 Jan;54(1):76–88. doi: 10.1016/s0022-5320(76)80010-x. [DOI] [PubMed] [Google Scholar]
- Eisenberg B. R., Kuda A. M. Stereological analysis of mammalian skeletal muscle. II. White vastus muscle of the adult guinea pig. J Ultrastruct Res. 1975 May;51(2):176–187. doi: 10.1016/s0022-5320(75)80146-8. [DOI] [PubMed] [Google Scholar]
- Luff A. R., Atwood H. L. Changes in the sarcoplasmic reticulum and transverse tubular system of fast and slow skeletal muscles of the mouse during postnatal development. J Cell Biol. 1971 Nov;51(21):369–383. doi: 10.1083/jcb.51.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacLennan D. H., Holland P. C. Calcium transport in sarcoplasmic reticulum. Annu Rev Biophys Bioeng. 1975;4(00):377–404. doi: 10.1146/annurev.bb.04.060175.002113. [DOI] [PubMed] [Google Scholar]
- Stewart P. S., MacLennan D. H. Surface particles of sarcoplasmic reticulum membranes. Structural features of the adenosine triphosphatase. J Biol Chem. 1974 Feb 10;249(3):985–993. [PubMed] [Google Scholar]