Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Feb 1;80(2):300–309. doi: 10.1083/jcb.80.2.300

Cyclic 3',5' AMP relay in Dictyostelium discoideum. II. Requirements for the initiation and termination of the response

PMCID: PMC2110342  PMID: 222770

Abstract

The secretion of 3H-cyclic adenosine 3',5'-monophosphate (cAMP) by prelabeled and suitably differentiated Dictyostelium discoideum amoebae was elicited in a perfusion apparatus by 10(-10) to 10(-5) M [14C]cAMP stimuli of defined magnitude and duration. Exogenous stimuli evoked an immediate increase in the rate of [3H]cAMP secretion which accelerated continuously to reach a peak of up to 100 times the unstimulated rate after 2--3 min of stimulation. Withdrawal of the stimulus at any time during the response led to a rapid decline to basal levels. Furthermore, a spontaneous decline in secretion rate was observed during prolonged cAMP stimulation, with a return to basal levels after 3--8 min of stimulation. After the initial secretory event, cells did not respond further to the continued presence of external [14C]cAMP unless (a) it was interrupted by a brief recovery period or (b) the level of the stimulus was increased sufficiently. Since the second increment could follow the first at any time, continuous secretion of [3H]cAMP could be sustained for up to 30 min by progressively increasing the stimulus between 10(-10) and 10(-5) M cAMP. The total magnitude of spontaneously terminated responses depended on the size of the increment in applied cAMP, larger stimuli evoking both a more rapid acceleration and a slower deceleration in [3H]cAMP secretion rate. The integrated response to a given increment in stimulus level was apparently independent of its "shape" - i.e., the duration, magnitude, and number of sub-steps in the increment. These data support two mechanistic inferences: that amoebae respond in proportion to relative increases in extracellular cAMP concentration, but adapt to the concentration of cAMP itself. The data further suggest that the initiation and termination of the response are mediated by cellular component(s) beyond cAMP-occupied receptors.

Full Text

The Full Text of this article is available as a PDF (907.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gerisch G., Malchow D. Cyclic AMP receptors and the control of cell aggregation in Dictyostelium. Adv Cyclic Nucleotide Res. 1976;7:49–68. [PubMed] [Google Scholar]
  2. Gerisch G., Wick U. Intracellular oscillations and release of cyclic AMP from Dictyostelium cells. Biochem Biophys Res Commun. 1975 Jul 8;65(1):364–370. doi: 10.1016/s0006-291x(75)80102-1. [DOI] [PubMed] [Google Scholar]
  3. Malchow D., Gerisch G. Short-term binding and hydrolysis of cyclic 3':5'-adenosine monophosphate by aggregating Dictyostelium cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2423–2427. doi: 10.1073/pnas.71.6.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rang H. P., Ritter J. M. On the mechanism of desensitization at cholinergic receptors. Mol Pharmacol. 1970 Jul;6(4):357–382. [PubMed] [Google Scholar]
  5. Robertson A., Drage D. J., Cohen M. H. Control of Aggregation in Dictyostelium discoideum by an External Periodic Pulse of Cyclic Adenosine Monophosphate. Science. 1972 Jan 21;175(4019):333–335. doi: 10.1126/science.175.4019.333. [DOI] [PubMed] [Google Scholar]
  6. Roos W., Gerisch G. Receptor-mediated adenylate cyclase activation in Dictyostelium discoideum. FEBS Lett. 1976 Oct 1;68(2):170–172. doi: 10.1016/0014-5793(76)80429-2. [DOI] [PubMed] [Google Scholar]
  7. Roos W., Nanjundiah V., Malchow D., Gerisch G. Amplification of cyclic-AMP signals in aggregating cells of Dictyostelium discoideum. FEBS Lett. 1975 May 1;53(2):139–142. doi: 10.1016/0014-5793(75)80005-6. [DOI] [PubMed] [Google Scholar]
  8. Roos W., Scheidegger C., Gerish G. Adenylate cyclase activity oscillations as signals for cell aggregation in Dictyostelium discoideum. Nature. 1977 Mar 17;266(5599):259–261. doi: 10.1038/266259a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES