Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Mar 1;80(3):715–731. doi: 10.1083/jcb.80.3.715

Parathyroid hormone biosynthesis. Correlation of conversion of biosynthetic precursors with intracellular protein migration as determined by electron microscope autoradiography

PMCID: PMC2110354  PMID: 457765

Abstract

The formation of parathyroid hormone (PTH) in the parathyroid gland occurs via two successive proteolytic cleavages from larger biosynthetic precursors. The initial product coded for by PTH mRNA is pre-proparathyroid hormone (PreProPTH), a polypeptide of 115 amino acids. Within 1 min of synthesis, the polypeptide, proparathyroid hormone (ProPTH), is formed as a result of the proteolytic removal of the NH2-terminal 25 amino acids from Pre-ProPTH. After a delay of 15-20 min, the NH2-terminal six-amino acid sequence of ProPTH is removed to give PTH of 84 amino acids. To investigate the subcellular sites in the parathyroid cell where the biosynthetic precursors undergo specific proteolytic cleavages, we examined, by electron microscopy autoradiography, the spatiotemporal migration of autoradiographic grains and, by electrophoresis, the kinetics of the disappearance of labeled Pre-ProPTH and the conversion of labeled ProPTH to PTH in bovine parathyroid gland slices incubated with [3H]leucine for 5 min (pulse incubation) followed by incubations with unlabeled leucine for periods up to 85 min (chase incubations). By 5 min, 85% of the autoradiographic grains were confined to the rough endoplasmic reticulum (RER). Autoradiographic grains increased rapidly in number in the Golgi region after 15 min of incubation; from 15 to 30 min they migrated within secretory vesicles still in the Golgi region and then migrated to mature secretory granules outside the Golgi area. Electrophoretic analyses showed that Pre-ProPTH disappeared rapidly (by 5 min) and that conversion of ProPTH to PTH was first detectable at 15 min and was completed by 30 min. At later times of incubation (30-90 min), autoradiographic grains within the secretion glanules migrated to the periphery of the cell and to the plasma membrane, in correlation with the release of PTH first detected by 30 min. We conclude that proteolytic conversion of Pre-ProPTH to ProPTH takes place in the RER and that subsequent conversion of ProPTH to PTH occurs in the Golgi complex.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Habener J. F., Potts J. T., Jr, Rich A. Pre-proparathyroid hormone. Evidence for an early biosynthetic precursor of proparathyroid hormone. J Biol Chem. 1976 Jul 10;251(13):3893–3899. [PubMed] [Google Scholar]
  2. Hamilton J. W., Niall H. D., Jacobs J. W., Keutmann H. T., Potts J. T., Jr, Cohn D. V. The N-terminal amino-acid sequence of bovine proparathyroid hormone. Proc Natl Acad Sci U S A. 1974 Mar;71(3):653–656. doi: 10.1073/pnas.71.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Howell S. L., Kostianovsky M., Lacy P. E. Beta granule formation in isolated islets of langerhans: a study by electron microscopic radioautography. J Cell Biol. 1969 Sep;42(3):695–705. doi: 10.1083/jcb.42.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kemper B., Habener J. F., Mulligan R. C., Potts J. T., Jr, Rich A. Pre-proparathyroid hormone: a direct translation product of parathyroid messenger RNA. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3731–3735. doi: 10.1073/pnas.71.9.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kemper B., Habener J. F., Rich A., Potts J. T., Jr Parathyroid secretion: discovery of a major calcium-dependent protein. Science. 1974 Apr 12;184(4133):167–169. doi: 10.1126/science.184.4133.167. [DOI] [PubMed] [Google Scholar]
  6. Redman C. M., Siekevitz P., Palade G. E. Synthesis and transfer of amylase in pigeon pancreatic micromosomes. J Biol Chem. 1966 Mar 10;241(5):1150–1158. [PubMed] [Google Scholar]
  7. SALPETER M. M., BACHMANN L. AUTORADIOGRAPHY WITH THE ELECTRON MICROSCOPE. A PROCEDURE FOR IMPROVING RESOLUTION, SENSITIVITY, AND CONTRAST. J Cell Biol. 1964 Aug;22:469–477. doi: 10.1083/jcb.22.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Whur P., Herscovics A., Leblond C. P. Radioautographic visualization of the incorporation of galactose-3H and mannose-3H by rat thyroids in vitro in relation to the stages of thyroglobulin synthesis. J Cell Biol. 1969 Nov;43(2):289–311. doi: 10.1083/jcb.43.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES