Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Mar 1;80(3):759–766. doi: 10.1083/jcb.80.3.759

Ultrastructure of microfilament bundles in baby hamster kidney (BHK-21) cells. The use of tannic acid

PMCID: PMC2110360  PMID: 379017

Abstract

After standard glutaraldehyde-osmium tetroxide fixation procedures, the majority of microfilament bundles in BHK-21 cells exhibit relatively uniform electron density along their long axes. The inclusion of tannic acid in the glutaraldehyde fixation solution results in obvious electron density shifts along the majority of microfilament bundles. Striated patterens are frequently observed which consist of regularly spaced electron dense (D) and electron lucid (L) bands. A striated pattern is also observed along many BHK-21 stress fibers after processing for indirect immunofluorescence utilizing BHK-21 myosin antiserum. A direct correlation of these periodicities seen by light and electron microscope techniques is impossible at the present time. However, comparative measurements indicate that the overall patterns seen in the immunofluorescence and electron microscope preparations are similar. The ultrastructural results provide an initial clue for the ultimate determination of the supramolecular organization of contracile proteins other than actin within the microfilament bundles of non- muscle cells.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ellis R. A. Fine structure of the myoepithelium of the eccrine sweat glands of man. J Cell Biol. 1965 Dec;27(3):551–563. doi: 10.1083/jcb.27.3.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fujiwara K., Pollard T. D. Fluorescent antibody localization of myosin in the cytoplasm, cleavage furrow, and mitotic spindle of human cells. J Cell Biol. 1976 Dec;71(3):848–875. doi: 10.1083/jcb.71.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Giacomelli F., Wiener J., Spiro D. Cross-striated arrays of filaments in endothelium. J Cell Biol. 1970 Apr;45(1):188–192. doi: 10.1083/jcb.45.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldman R. D., Follett E. A. The structure of the major cell processes of isolated BHK21 fibroblasts. Exp Cell Res. 1969 Oct;57(2):263–276. doi: 10.1016/0014-4827(69)90150-5. [DOI] [PubMed] [Google Scholar]
  5. Goldman R. D., Lazarides E., Pollack R., Weber K. The distribution of actin in non-muscle cells. The use of actin antibody in the localization of actin within the microfilament bundles of mouse 3T3 cells. Exp Cell Res. 1975 Feb;90(2):333–344. doi: 10.1016/0014-4827(75)90323-7. [DOI] [PubMed] [Google Scholar]
  6. Goldman R. D. The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine. J Cell Biol. 1971 Dec;51(3):752–762. doi: 10.1083/jcb.51.3.752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldman R. D. The use of heavy meromyosin binding as an ultrastructural cytochemical method for localizing and determining the possible functions of actin-like microfilaments in nonmuscle cells. J Histochem Cytochem. 1975 Jul;23(7):529–542. doi: 10.1177/23.7.1095652. [DOI] [PubMed] [Google Scholar]
  8. Goldman R. D., Yerna M. J., Schloss J. A. Localization and organization of microfilaments and related proteins in normal and virus-transformed cells. J Supramol Struct. 1976;5(2):155–183. doi: 10.1002/jss.400050206. [DOI] [PubMed] [Google Scholar]
  9. Hammersen F. Endothelial contractility - an undecided problem in vascular research. Beitr Pathol. 1976 May;157(4):327–348. doi: 10.1016/s0005-8165(76)80049-2. [DOI] [PubMed] [Google Scholar]
  10. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  11. Karlsson U., Andersson-Cedergren E. Small leptomeric organelles in intrafusal muscle fibers of the frog as revealed by electron microscopy. J Ultrastruct Res. 1968 Jun;23(5):417–426. doi: 10.1016/s0022-5320(68)80107-8. [DOI] [PubMed] [Google Scholar]
  12. Lazarides E. Actin, alpha-actinin, and tropomyosin interaction in the structural organization of actin filaments in nonmuscle cells. J Cell Biol. 1976 Feb;68(2):202–219. doi: 10.1083/jcb.68.2.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lazarides E., Weber K. Actin antibody: the specific visualization of actin filaments in non-muscle cells. Proc Natl Acad Sci U S A. 1974 Jun;71(6):2268–2272. doi: 10.1073/pnas.71.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McNutt N. S., Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from SV 40-transformed cells. IV. Microfilament distribution and cell shape in untransformed, transformed, and revertant Balb-c 3T3 cells. J Cell Biol. 1973 Feb;56(2):412–428. doi: 10.1083/jcb.56.2.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McNutt N. S., Culp L. A., Black P. H. Contact-inhibited revertant cell lines isolated from SV40-transformed cells. II. Ultrastructural study. J Cell Biol. 1971 Sep;50(3):691–708. doi: 10.1083/jcb.50.3.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Röhlich P., Oláh I. Cross-striated fibrils in the endothelium of the rat myometral arterioles. J Ultrastruct Res. 1967 Jun;18(5):667–676. doi: 10.1016/s0022-5320(67)80212-0. [DOI] [PubMed] [Google Scholar]
  18. STOKER M., MACPHERSON I. SYRIAN HAMSTER FIBROBLAST CELL LINE BHK21 AND ITS DERIVATIVES. Nature. 1964 Sep 26;203:1355–1357. doi: 10.1038/2031355a0. [DOI] [PubMed] [Google Scholar]
  19. Schloss J. A., Milsted A., Goldman R. D. Myosin subfragment binding for the localization of actin-like microfilaments in cultured cells. A light and electron microscope study. J Cell Biol. 1977 Sep;74(3):794–815. doi: 10.1083/jcb.74.3.794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. THOENES W., RUSKA H. [On "leptomere myofibrils" in the myocardial cells]. Z Zellforsch Mikrosk Anat. 1960;51:560–570. [PubMed] [Google Scholar]
  22. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. VOELZ H., DWORKIN M. Fine structure of Myxococcus xanthus during morphogenesis. J Bacteriol. 1962 Nov;84:943–952. doi: 10.1128/jb.84.5.943-952.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang K., Ash J. F., Singer S. J. Filamin, a new high-molecular-weight protein found in smooth muscle and non-muscle cells. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4483–4486. doi: 10.1073/pnas.72.11.4483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Weber K., Groeschel-Stewart U. Antibody to myosin: the specific visualization of myosin-containing filaments in nonmuscle cells. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4561–4564. doi: 10.1073/pnas.71.11.4561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wessells N. K., Spooner B. S., Ludueña M. A. Surface movements, microfilaments and cell locomotion. Ciba Found Symp. 1973;14:53–82. doi: 10.1002/9780470719978.ch4. [DOI] [PubMed] [Google Scholar]
  27. Yerna M. J., Aksoy M. O., Hartshorne D. J., Goldman R. D. BHK21 myosin: isolation, biochemical characterization and intracellular localization. J Cell Sci. 1978 Jun;31:411–429. doi: 10.1242/jcs.31.1.411. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES