Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Mar 1;80(3):553–563. doi: 10.1083/jcb.80.3.553

Microtubule protein preparations from C6 glial cells and their spontaneous polymer formation

PMCID: PMC2110368  PMID: 457759

Abstract

C6 cell tubulin is indistinguishable from hog brain tubulin with respect to its molecular weight, amino acid composition, and colchicine- binding activity. Moreover, microtubule assembly systems from both sources form the same structures: rings, ribbons, tubules, and drug- induced polymers. There is, nevertheless, a difference between the cultured cell and brain systems which lies in the nature of their microtubule-associated accessory proteins. C6 microtubule preparations exhibit few rings at 0 degrees C, have low polymerization yield, and have a low content of accessory proteins. The addition of brain accessory proteins enhances the numbers of rings, and the yield of microtubules, to levels comparable with those of brain preparations. The polymerizing ability of C6 microtubule protein decays much faster than that of brain, but it can be restored by the addition of brain accessory protein. The results suggest that C6 accessory proteins are more labile than their brain counterparts.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol. 1977 Mar;72(3):642–654. doi: 10.1083/jcb.72.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloodgood R. A., Rosenbaum J. L. Initiation of brain tubulin assembly by a high molecular weight flagellar protein factor. J Cell Biol. 1976 Oct;71(1):322–331. doi: 10.1083/jcb.71.1.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryan J. A quantitative analysis of microtubule elongation. J Cell Biol. 1976 Dec;71(3):749–767. doi: 10.1083/jcb.71.3.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Connolly J. A., Kalnins V. I., Cleveland D. W., Kirschner M. W. Immunoflourescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2437–2440. doi: 10.1073/pnas.74.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davison P. F., Huneeus F. C. Fibrillar proteins from squid axons. II. Microtubule protein. J Mol Biol. 1970 Sep 28;52(3):429–439. doi: 10.1016/0022-2836(70)90411-0. [DOI] [PubMed] [Google Scholar]
  6. Detrich H. W., 3rd, Berkowitz A., Kim H., Williams R. C., Jr Binding of glycerol by microtubule protein. Biochem Biophys Res Commun. 1976 Feb 9;68(3):961–968. doi: 10.1016/0006-291x(76)91239-0. [DOI] [PubMed] [Google Scholar]
  7. Doenges K. H., Nagle B. W., Uhlmann A., Bryan J. In vitro assembly of tubulin from nonneural cells (Ehrlich ascites tumor cells). Biochemistry. 1977 Jul 26;16(15):3455–3459. doi: 10.1021/bi00634a025. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Olmsted J. B., Borisy G. G. Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry. 1973 Oct 9;12(21):4282–4289. doi: 10.1021/bi00745a037. [DOI] [PubMed] [Google Scholar]
  10. Olmsted J. B., Marcum J. M., Johnson K. A., Allen C., Borisy G. G. Microtuble assembly: some possible regulatory mechanisms. J Supramol Struct. 1974;2(2-4):429–450. doi: 10.1002/jss.400020230. [DOI] [PubMed] [Google Scholar]
  11. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Wiche G., Cole R. D. Reversible in vitro polymerization of tubulin from a cultured cell line (rat glial cell clone C6). Proc Natl Acad Sci U S A. 1976 Apr;73(4):1227–1231. doi: 10.1073/pnas.73.4.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wiche G., Honig L. S., Cole R. D. Polymerising ability of C6 glial cell microtubule protein decays much faster than its colchicine-binding activity. Nature. 1977 Sep 29;269(5627):435–436. doi: 10.1038/269435a0. [DOI] [PubMed] [Google Scholar]
  14. Wiche G., Lundblad V. J., Cole R. D. Competence of soluble cell extracts as microtubule assembly systems. Comparison of simian virus 40 transformed and nontransformed mouse 3T3 fibroblasts. J Biol Chem. 1977 Jan 25;252(2):794–796. [PubMed] [Google Scholar]
  15. Wilson L. Properties of colchicine binding protein from chick embryo brain. Interactions with vinca alkaloids and podophyllotoxin. Biochemistry. 1970 Dec 8;9(25):4999–5007. doi: 10.1021/bi00827a026. [DOI] [PubMed] [Google Scholar]
  16. Yen S. H., Dahl D., Schachner M., Shelanski M. L. Biochemistry of the filaments of brain. Proc Natl Acad Sci U S A. 1976 Feb;73(2):529–533. doi: 10.1073/pnas.73.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES