Abstract
A centriolar complex comprising a pair of centrioles and a cloud of pericentriolar materials is located at the point of covergence of the microtubules of the mitotic apparatus. The in vitro assembly of microtubules was observed onto these complexes in the 1,400 g supernatant fraction of colcemid-blocked, mitotic HeLa cells lysed into solutions containing tubulin and Triton X-100. Dark-field microscopy provided a convenient means by which this process could be visualized directly. When this 1,400 g supernate was incubated at 30 degrees C and centrifuged into a discontinuous sucrose gradient, a band containing centriolar complexes and assembled microtubles was obtained at 50-60% sucrose interface. Ultrastructual analysis indicated that the majority of the microtubules assembled predominantly from the pericentriolar material but also onto the centrioles. When cells were synchronized by a double thymide block, the assembly of microtubules onto centriolar complexes was observed only in lysates of mitotic cells; no assembly was seen in lysed material of interphase cells. Microtubule assembly occured onto centriolar complexes in solutions of either 100,000 g brain supernate, 2 X cycled tubulin, or purified tubulin dimers. This study demonstrates that the pericentriolar material becomes competent as a microtubule-organizing center (MTOC) at the time of mitosis. With use of the techniques described, a method for the isolation of centriolar complexes may be developed.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnelly G. M., Sisken J. E. RNA and protein synthesis required for entry of cells into mitosis and during the mitotic cycle. Exp Cell Res. 1967 Apr;46(1):93–105. doi: 10.1016/0014-4827(67)90412-0. [DOI] [PubMed] [Google Scholar]
- Gould R. R., Borisy G. G. The pericentriolar material in Chinese hamster ovary cells nucleates microtubule formation. J Cell Biol. 1977 Jun;73(3):601–615. doi: 10.1083/jcb.73.3.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moses M. J., Counce S. J. Electron microscopy of kinetochores in whole mount spreads of mitotic chromosomes from hela cells. J Exp Zool. 1974 Jul;189(1):115–120. doi: 10.1002/jez.1401890110. [DOI] [PubMed] [Google Scholar]
- Phillips S. G., Rattner J. B. Dependence of centriole formation on protein synthesis. J Cell Biol. 1976 Jul;70(1):9–19. doi: 10.1083/jcb.70.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROBBINS E., GONATAS N. K. THE ULTRASTRUCTURE OF A MAMMALIAN CELL DURING THE MITOTIC CYCLE. J Cell Biol. 1964 Jun;21:429–463. doi: 10.1083/jcb.21.3.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rao P. N., Johnson R. T. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature. 1970 Jan 10;225(5228):159–164. doi: 10.1038/225159a0. [DOI] [PubMed] [Google Scholar]
- Robbins E., Jentzsch G. Ultrastructural changes in the mitotic apparatus at the metaphase-to-anaphase transition. J Cell Biol. 1969 Mar;40(3):678–691. doi: 10.1083/jcb.40.3.678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robbins E., Shelanski M. Synthesis of a colchicine-binding protein during the HeLa cell life cycle. J Cell Biol. 1969 Nov;43(2):371–373. doi: 10.1083/jcb.43.2.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telzer B. R., Moses M. J., Rosenbaum J. L. Assembly of microtubules onto kinetochores of isolated mitotic chromosomes of HeLa cells. Proc Natl Acad Sci U S A. 1975 Oct;72(10):4023–4027. doi: 10.1073/pnas.72.10.4023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisenberg R. C., Rosenfeld A. C. In vitro polymerization of microtubules into asters and spindles in homogenates of surf clam eggs. J Cell Biol. 1975 Jan;64(1):146–158. doi: 10.1083/jcb.64.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
