Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Jun 1;81(3):672–679. doi: 10.1083/jcb.81.3.672

Distribution of fluorescently labeled actin in living sea urchin eggs during early development

PMCID: PMC2110395  PMID: 457779

Abstract

Rabbit skeletal muscle actin was labeled with 5- iodoacetamidofluorescein (5-IAF) and purified by gel filtration, ion- exchange chromatography, and polymerization-depolymerization. The resultant fluorescent conjugates retained full biochemical activities. The labeled actin was incorporated into unfertilized eggs of Lytechinus pictus by direct microinjection and the distribution of fluorescence was investigated after fertilization through the first division cycle. The results were interpreted by comparing the images with those of control eggs injected with fluorescein isothiocyanate (FITC)-labeled ovalbumin. After fertilization of eggs containing IAF actin, the membrane-cortical regions showed dramatic increases in fluorescence intensity which were not observed in FITC ovalbumin controls. During the first division, spindle regions of both IAF-actin-injected eggs and control eggs became distinctly fluorescent. However, no distinctly fluorescent contractile ring was detected in the cleavage furrow. After cytokinesis, the surface between blastomeres containing IAF actin exhibited an increase in fluorescence intensity. These observations have been compared with those of previous studies using different methods, and the possible implications have been discussed in relation to cellular functions.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonner W. M. Protein migration into nuclei. I. Frog oocyte nuclei in vivo accumulate microinjected histones, allow entry to small proteins, and exclude large proteins. J Cell Biol. 1975 Feb;64(2):421–430. doi: 10.1083/jcb.64.2.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Condeelis J. S., Taylor D. L. The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum. J Cell Biol. 1977 Sep;74(3):901–927. doi: 10.1083/jcb.74.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eddy E. M., Shapiro B. M. Changes in the topography of the sea urchin egg after fertilization. J Cell Biol. 1976 Oct;71(1):35–48. doi: 10.1083/jcb.71.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Epel D. The program of fertilization. Sci Am. 1977 Nov;237(5):128–138. doi: 10.1038/scientificamerican1177-128. [DOI] [PubMed] [Google Scholar]
  5. Goldman R. D., Yerna M. J., Schloss J. A. Localization and organization of microfilaments and related proteins in normal and virus-transformed cells. J Supramol Struct. 1976;5(2):155–183. doi: 10.1002/jss.400050206. [DOI] [PubMed] [Google Scholar]
  6. Lin T. I. Fluorimetric studies of actin labeled with dansyl aziridine. Arch Biochem Biophys. 1978 Jan 30;185(2):285–299. doi: 10.1016/0003-9861(78)90170-4. [DOI] [PubMed] [Google Scholar]
  7. Maupin-Szamier P., Pollard T. D. Actin filament destruction by osmium tetroxide. J Cell Biol. 1978 Jun;77(3):837–852. doi: 10.1083/jcb.77.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  9. Szollosi D. Cortical cytoplasmic filaments of cleaving eggs: a structural element corresponding to the contractile ring. J Cell Biol. 1970 Jan;44(1):192–209. doi: 10.1083/jcb.44.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Vacquier V. D., Mazia D. Twinning of sand dollar embryos by means of dithiothreitol. The structural basis of blastomere interactions. Exp Cell Res. 1968 Sep;52(1):209–221. doi: 10.1016/0014-4827(68)90560-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES