Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Apr;170(4):1843–1847. doi: 10.1128/jb.170.4.1843-1847.1988

Roles of bacteriochlorophyll and carotenoid synthesis in formation of intracytoplasmic membrane systems and pigment-protein complexes in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114.

K Iba 1, K Takamiya 1, Y Toh 1, M Nishimura 1
PMCID: PMC211040  PMID: 3280552

Abstract

Synthesis of bacteriochlorophyll and carotenoids was inhibited in an aerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114, by alpha, alpha'-dipyridyl and diphenylamine. Formation of two pigment-protein complexes, reaction center-B870 (RC-B870) and B806, and development of the intracytoplasmic membranes of the cells were studied by spectral analysis and electron microscopy. Inhibition of bacteriochlorophyll synthesis by alpha, alpha'-dipyridyl, which was accompanied by a decrease in carotenoid synthesis, suppressed formation of intracytoplasmic membranes in the cells. Growth under illumination had a similar effect on formation of pigments and membranes. On the other hand, inhibition of carotenoid synthesis by diphenylamine did not suppress either development of the membrane system or bacteriochlorophyll synthesis. Formation of RC-B870 and B806 complexes, however, was differentially affected by blockage of carotenoid synthesis. In the presence of diphenylamine, the B806 complex was formed in a much smaller amount than the RC-B870 complex. These results suggest that, in Erythrobacter sp. strain OCh114, bacteriochlorophyll plays an essential role in intracytoplasmic membrane development, and carotenoids are important for assembly of pigment-protein complexes.

Full text

PDF
1843

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bensadoun A., Weinstein D. Assay of proteins in the presence of interfering materials. Anal Biochem. 1976 Jan;70(1):241–250. doi: 10.1016/s0003-2697(76)80064-4. [DOI] [PubMed] [Google Scholar]
  2. Brown A. E., Eiserling F. A., Lascelles J. Bacteriochlorophyll Synthesis and the Ultrastructure of Wild Type and Mutant Strains of Rhodopseudomonas spheroides. Plant Physiol. 1972 Dec;50(6):743–746. doi: 10.1104/pp.50.6.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  4. COHEN-BAZIRE G., STANIER R. Y. Specific inhibition of carotenoid synthesis in a photosynthetic bacterium and its physiological consequences. Nature. 1958 Jan 24;181(4604):250–252. doi: 10.1038/181250a0. [DOI] [PubMed] [Google Scholar]
  5. Cellarius R. A., Peters G. A. Photosynthetic membrane development in Rhodopseudomonas spheroides: incorporation of bacteriochlorophyll and development of energy transfer and photochemical activity. Biochim Biophys Acta. 1969 Oct 21;189(2):234–244. doi: 10.1016/0005-2728(69)90050-4. [DOI] [PubMed] [Google Scholar]
  6. FULLER R. C., ANDERSON I. C. Suppression of carotenoid synthesis and its effect on the activity of photosynthetic bacterial chromatophores. Nature. 1958 Jan 24;181(4604):252–254. doi: 10.1038/181252a0. [DOI] [PubMed] [Google Scholar]
  7. Klug G., Drews G. Construction of a gene bank of Rhodopseudomonas capsulata using a broad host range DNA cloning system. Arch Microbiol. 1984 Nov;139(4):319–325. doi: 10.1007/BF00408373. [DOI] [PubMed] [Google Scholar]
  8. Klug G., Kaufmann N., Drews G. Gene expression of pigment-binding proteins of the bacterial photosynthetic apparatus: Transcription and assembly in the membrane of Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6485–6489. doi: 10.1073/pnas.82.19.6485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Oelze J., Drews G. Membranes of photosynthetic bacteria. Biochim Biophys Acta. 1972 Apr 18;265(2):209–239. doi: 10.1016/0304-4157(72)90003-2. [DOI] [PubMed] [Google Scholar]
  10. Oelze J., Schroeder J., Drews G. Bacteriochlorophyll, fatty-acid, and protein synthesis in relation to thylakoid formation in mutant strains of Rhodospirillum rubrum. J Bacteriol. 1970 Mar;101(3):669–674. doi: 10.1128/jb.101.3.669-674.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Peters G. A., Cellarius R. A. Photosynthetic membrane development in Rhodopseudomonas spheroides. II. Correlation of pigment incorporation with morphological aspects of thylakoid formation. J Bioenerg. 1972 Aug;3(5):345–359. doi: 10.1007/BF01516074. [DOI] [PubMed] [Google Scholar]
  12. Sauer K., Austin L. A. Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria. Biochemistry. 1978 May 16;17(10):2011–2019. doi: 10.1021/bi00603a033. [DOI] [PubMed] [Google Scholar]
  13. Schumacher A., Drews G. The formation of bacteriochlorophyll.protein complexes of the photosynthetic apparatus of Rhodopseudomonas capsulata during early stages of development. Biochim Biophys Acta. 1978 Feb 9;501(2):183–194. doi: 10.1016/0005-2728(78)90025-7. [DOI] [PubMed] [Google Scholar]
  14. Zsebo K. M., Hearst J. E. Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell. 1984 Jul;37(3):937–947. doi: 10.1016/0092-8674(84)90428-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES