Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Jul 1;82(1):227–238. doi: 10.1083/jcb.82.1.227

Role of tropomyosin in actin filament formation in embryonic salamander heart cells

PMCID: PMC2110409  PMID: 383724

Abstract

Recessive mutant gene c in Ambystoma mexicanum embryos causes a failure of the heart to function even though initial heart development appears normal. An analysis of the constituent proteins of normal and mutant hearts by SDS-poly-acrylamide gel electrophoresis shows that actin (43,000 daltons) is present in almost normal amounts, while myosin heavy chain (200,000 daltons) is somewhat reduced in mutants. Both SDS- polyacrylamide gel electrophoresis and immunofluorescence studies reveal that tropomyosin is abundant in normal hearts, but very much reduced in mutants. Electron microscope studies of normal hearts show numerous well-organized myofibrils. Although mutant cardiomyocytes contain a few 60- and 150-A filaments, organized sacromeres are absent. Instead, amorphous proteinaceous collections are prominent. Previously reported heavy meromyosin (HMM)-binding experiments on glycerinated hearts demonstrate that most of the actin is contained within the amorphous collections in a nonfilamentous state, and the addition of HMM causes polymerization into F actin (Lemanski et al., 1976, J. Cell. Biol. 68:375-388). In the present study, glycerol-extracted hearts are incubated with tropomyosin, purified from rabbit or chicken skeletal muscle. This treatment causes the amorphous collections to disappear, and large numbers of distinct thin actin (60- to 80-A) filaments are seen in their place. Negative staining experiments corroborate this observation. These results suggest that the nonfilamentous actin located in the amorphous collections of mutant heart cells is induced to form into filaments with the addition of tropomyosin.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen I., Cohen C. A tropomyosin-like protein from human platelets. J Mol Biol. 1972 Jul 21;68(2):383–387. doi: 10.1016/0022-2836(72)90220-3. [DOI] [PubMed] [Google Scholar]
  2. Eisenberg E., Kielley W. W. Troponin-tropomyosin complex. Column chromatographic separation and activity of the three, active troponin components with and without tropomyosin present. J Biol Chem. 1974 Aug 10;249(15):4742–4748. [PubMed] [Google Scholar]
  3. Fine R. E., Blitz A. L., Hitchcock S. E., Kaminer B. Tropomyosin in brain and growing neurones. Nat New Biol. 1973 Oct 10;245(145):182–186. doi: 10.1038/newbio245182a0. [DOI] [PubMed] [Google Scholar]
  4. Goli D. E., Suzuki A., Temple J., Holmes G. R. Studies on purified -actinin. I. Effect of temperature and tropomyosin on the -actinin-F-actin interaction. J Mol Biol. 1972 Jun 28;67(3):469–488. doi: 10.1016/0022-2836(72)90464-0. [DOI] [PubMed] [Google Scholar]
  5. Gorovsky M. A., Carlson K., Rosenbaum J. L. Simple method for quantitive densitometry of polyacrylamide gels using fast green. Anal Biochem. 1970 Jun;35(2):359–370. doi: 10.1016/0003-2697(70)90196-x. [DOI] [PubMed] [Google Scholar]
  6. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  7. Jacobson A. G., Duncan J. T. Heart induction in salamanders. J Exp Zool. 1968 Jan;167(1):79–103. doi: 10.1002/jez.1401670106. [DOI] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lemanski L. F. Heart development in the Mexican salamander, Ambystoma Mexicanum. II. Ultrastructure. Am J Anat. 1973 Apr;136(4):487–525. doi: 10.1002/aja.1001360408. [DOI] [PubMed] [Google Scholar]
  10. Lemanski L. F. Heart development in the Mexican salamander, Ambystoma mexicanum. I. Gross anatomy, histology and histochemistry. J Morphol. 1973 Mar;139(3):301–327. doi: 10.1002/jmor.1051390303. [DOI] [PubMed] [Google Scholar]
  11. Lemanski L. F., Mooseker M. S., Peachey L. D., Iyengar M. R. Studies of muscle proteins in embryonic myocardial cells of cardiac lethal mutant mexican axolotls (Ambystoma mexicanum) by use of heavy meromyosin binding and sodium dodecyl sulfate polyacrylamide gel electrophoresis. J Cell Biol. 1976 Feb;68(2):375–388. doi: 10.1083/jcb.68.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lemanski L. F. Morphological and biochemical abnormalities in hearts of cardiac mutant salamanders (Ambystoma mexicanum). J Supramol Struct. 1976;5(2):221–238. doi: 10.1002/jss.400050209. [DOI] [PubMed] [Google Scholar]
  13. Lemanski L. F. Morphology of developing heart in cardiac lethal mutant Mexican axolotls, Ambystoma mexicanum. Dev Biol. 1973 Aug;33(2):312–333. doi: 10.1016/0012-1606(73)90140-1. [DOI] [PubMed] [Google Scholar]
  14. Lenmanski L. F., Marx B. S., Hill C. S. Evidence for abnormal heart induction in cardiac-mutant salamanders (Ambystoma mexicanum). Science. 1977 May 20;196(4292):894–896. doi: 10.1126/science.860120. [DOI] [PubMed] [Google Scholar]
  15. Maupin-Szamier P., Pollard T. D. Actin filament destruction by osmium tetroxide. J Cell Biol. 1978 Jun;77(3):837–852. doi: 10.1083/jcb.77.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  17. SZENT-GYORGYI A. G. Meromyosins, the subunits of myosin. Arch Biochem Biophys. 1953 Feb;42(2):305–320. doi: 10.1016/0003-9861(53)90360-9. [DOI] [PubMed] [Google Scholar]
  18. Schreckenberg G. M., Jacobson A. G. Normal stages of development of the axolotl. Ambystoma mexicanum. Dev Biol. 1975 Feb;42(2):391–400. doi: 10.1016/0012-1606(75)90343-7. [DOI] [PubMed] [Google Scholar]
  19. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  20. Tilney L. G., Detmers P. Actin in erythrocyte ghosts and its association with spectrin. Evidence for a nonfilamentous form of these two molecules in situ. J Cell Biol. 1975 Sep;66(3):508–520. doi: 10.1083/jcb.66.3.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tilney L. G. The polymerization of actin. II. How nonfilamentous actin becomes nonrandomly distributed in sperm: evidence for the association of this actin with membranes. J Cell Biol. 1976 Apr;69(1):51–72. doi: 10.1083/jcb.69.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES