Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Jul 1;82(1):17–31. doi: 10.1083/jcb.82.1.17

Mitochondrial ribosome assembly in Neurospora. Two-dimensional gel electrophoretic analysis of mitochondrial ribosomal proteins

PMCID: PMC2110415  PMID: 158027

Abstract

Recent results with Neurospora crassa show that one protein (S-5, mol wt 52,000) associated with the mitochondrial (mit) small ribosomal subunit is translated within the mitochondria (Lambowitz et al. 1976. J. Mol. Biol. 107:223-253). In the present work, Neurospora mit ribosomal proteins were analyzed by two-dimensional gel electrophoresis using a modification of the gel system of Mets and Bogorad. The results show that S-5 is present in near stoichiometric concentrations in high salt (0.5 MKCl)-washed mit small subunits from wild-type strains. S-5 is among the most basic mit ribosomal proteins (pI greater than 10) and has a high affinity for RNA under the conditions of the urea-containing gel buffers. The role of S-5 in mit ribosome assembly was investigated by an indirect method, making use of chloramphenicol to specifically inhibit mit protein synthesis. Chloramphenicol was found to rapidly inhibit the assembly of mit small subunits leading to the formation of CAP-30S particles which sediment slightly behind mature small subunits (LaPolla and Lambowitz. 1977. J. Mol. 116: 189-205). Two-dimensional gel analysis shows that the more slowly sedimentaing CAP-30S particles are deficient in S-5 and in several other proteins, whereas these proteins are present in normal concentrations in mature small subunits from the same cells. Because S-5 is the only mit ribosomal protein whose synthesis is directly inhibited by chloramphenicol, the results tentatively suggest that S-5 plays a role in the assembly of mit small subunits. In addition, the results are consistent with the idea that S- 5 stabilizes the binding of several other mit small subunit proteins. Two-dimensional gel electrophoresis was used to examine mit ribosomal proteins from [poky] and six additional extra-nuclear mutants with defects in the assembly of mit small subunits. The electrophoretic mobility of S-5 is not detectably altered in any of the mutants. However, [poky] mit small subunits are deficient in S-5 and also contain several other proteins in abnormally low or high concentrations. These and other results are consistent with a defect in a mit ribosomal constituent in [poky].

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., McClure W. O. An improved scintillation cocktail of high-solubilizing power. Anal Biochem. 1973 Jan;51(1):173–179. doi: 10.1016/0003-2697(73)90465-x. [DOI] [PubMed] [Google Scholar]
  2. Bertrand H., Pittenger T. H. Isolation and classification of extranuclear mutants of Neurospora crassa. Genetics. 1972 Aug;71(4):521–533. doi: 10.1093/genetics/71.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blobel G., Sabatini D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A. 1971 Feb;68(2):390–394. doi: 10.1073/pnas.68.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brambl R. M., Woodward D. O. Altered species of mitochondrial transfer RNA associated with the mi-1 cytoplasmic mutation in Neurospora crassa. Nat New Biol. 1972 Aug 16;238(85):198–200. doi: 10.1038/newbio238198a0. [DOI] [PubMed] [Google Scholar]
  5. Cann J. R. Multiple electrophoretic zones arising from protein-buffer interaction. Biochemistry. 1966 Mar;5(3):1108–1112. doi: 10.1021/bi00867a042. [DOI] [PubMed] [Google Scholar]
  6. Chua N. H., Bennoun P. Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in photosystem II reaction center. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2175–2179. doi: 10.1073/pnas.72.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins R. A., Bertrand H. Nuclear suppressors of the [poky] cytoplasmic mutant in Neurospora crassa. III. Effects on other cytoplasmic mutants and on mitochondrial ribosome assembly in [poky]. Mol Gen Genet. 1978 May 31;161(3):267–273. doi: 10.1007/BF00331000. [DOI] [PubMed] [Google Scholar]
  8. Hardy S. J., Kurland C. G., Voynow P., Mora G. The ribosomal proteins of Escherichia coli. I. Purification of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2897–2905. doi: 10.1021/bi00835a031. [DOI] [PubMed] [Google Scholar]
  9. Kuriyama Y., Luck D. J. Methylation and processing of mitochondrial ribosomal RNAs in poky and wild-type Neurospora crassa. J Mol Biol. 1974 Feb 25;83(2):253–266. doi: 10.1016/0022-2836(74)90390-8. [DOI] [PubMed] [Google Scholar]
  10. Kuriyama Y., Luck D. J. Ribosomal RNA synthesis in mitochondria of Neurospora crassa. J Mol Biol. 1973 Feb 5;73(4):425–437. doi: 10.1016/0022-2836(73)90091-0. [DOI] [PubMed] [Google Scholar]
  11. LaPolla R. J., Lambowitz A. M. Mitochondrial ribosome assembly in Neurospora crassa. Chloramphenicol inhibits the maturation of small ribosomal subunits. J Mol Biol. 1977 Oct 25;116(2):189–205. doi: 10.1016/0022-2836(77)90212-1. [DOI] [PubMed] [Google Scholar]
  12. Lambowitz A. M., Chua N. H., Luck D. J. Mitochondrial ribosome assembly in Neurospora. Preparation of mitochondrial ribosomal precursor particles, site of synthesis of mitochondrial ribosomal proteins and studies on the poky mutant. J Mol Biol. 1976 Nov 5;107(3):223–253. doi: 10.1016/s0022-2836(76)80003-4. [DOI] [PubMed] [Google Scholar]
  13. Lambowitz A. M., Luck D. J. Studies on the poky mutant of eurospora crassa. Fingerprint analysis of mitochondrial ribosomal RNA. J Biol Chem. 1976 May 25;251(10):3081–3095. [PubMed] [Google Scholar]
  14. Lambowitz A. M. Preparation and analysis of mitochondrial ribosomes. Methods Enzymol. 1979;59:421–433. doi: 10.1016/0076-6879(79)59103-4. [DOI] [PubMed] [Google Scholar]
  15. Lizardi P. M., Luck D. J. Absence of a 5S RNA complnent in the mitochondrial ribosomes of Neurospora crassa. Nat New Biol. 1971 Feb 3;229(5):140–142. doi: 10.1038/newbio229140a0. [DOI] [PubMed] [Google Scholar]
  16. Lizardi P. M., Luck D. J. The intracellular site of synthesis of mitochndrial ribosomal proteins in Neurospora crassa. J Cell Biol. 1972 Jul;54(1):56–74. doi: 10.1083/jcb.54.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mets L. J., Bogorad L. Two-dimensional polyacrylamide gel electrophoresis: an improved method for ribosomal proteins. Anal Biochem. 1974 Jan;57(1):200–210. doi: 10.1016/0003-2697(74)90065-7. [DOI] [PubMed] [Google Scholar]
  18. Peacock A. C., Dingman C. W. Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose-acrylamide composite gels. Biochemistry. 1968 Feb;7(2):668–674. doi: 10.1021/bi00842a023. [DOI] [PubMed] [Google Scholar]
  19. Rifkin M. R., Luck D. J. Defective production of mitochondrial ribosomes in the poky mutant of Neurospora crassa. Proc Natl Acad Sci U S A. 1971 Feb;68(2):287–290. doi: 10.1073/pnas.68.2.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Solymosy F., Fedorcsák I., Gulyás A., Farkas G. L., Ehrenberg L. A new method based on the use of diethyl pyrocarbonate as a nuclease inhibitor for the extraction of undegraded nucleic acid from plant tissues. Eur J Biochem. 1968 Sep 24;5(4):520–527. doi: 10.1111/j.1432-1033.1968.tb00401.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES