Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1979 Oct 1;83(1):159–178. doi: 10.1083/jcb.83.1.159

Autoradiographic identification of acetylcholine in the rabbit retina

PMCID: PMC2110447  PMID: 92476

Abstract

Rabbit retinas were studied in vitro under conditions known to maintain their physiological function. Retinas incubated in the presence of [3H]choline synthesized substantial amounts of both [3H]phosphorylcholine and [3H]acetylcholine. With time, [3H]phosphorylcholine proceeded into phospholipids, primarily phosphatidylcholine. Retinas pulse-labeled by a 15-min exposure to 0.3 microM [3H]choline were incubated for a subsequent hour under chase conditions designed either to retain newly synthesized acetylcholine within synapses or to promote its release. At the end of this time the two groups of retinas were found to contain equal amounts of radioactivity in the phospholipid pathway, but only the retinas incubated under the acetylcholine-protecting conditions contained [3H]acetylcholine. Freeze-dried, vacuum-embedded tissue from each retina was autoradiographed on dry emulsion. All retinas showed silver grains over the photoreceptor cells and faint labeling of all ganglion cells. In the retinas that contained [3H]acetylcholine, silver grains also accumulated densely over a few cells with the position of amacrine cells, over a subset of the cells of the ganglion cell layer, and in two bands over the inner plexiform layer. Fixation of the retina with aqueous osmium tetroxide retained only the radioactive compounds located in the photoreceptor and ganglion cells. Sections from freeze- dried tissue lost their water-soluble choline metabolites when exposed to water, and autoradiography of such sections again revealed radioactivity primarily in the photoreceptor and ganglion cells. Radioactive compounds extracted from the sections were found to faithfully reflect those present in the tissue before processing; analysis of the compounds eluted from sections microdissected along the outer plexiform layer showed [3H]acetylcholine to have been synthesized only by cells of the inner retina. Taken together, these results indicate that the photoreceptor and ganglion cells are distinguished by a rapid synthesis of choline-containing phospholipids, while acetylcholine synthesis is restricted to a few cells at both margins of the inner plexiform layer. They imply that the only neurons to release acetylcholine within the rabbit retina are a small group of probable amacrine cells.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES A., 3rd, HASTINGS A. B. Studies on water and electrolytes in nervous tissue. I. Rabbit retina: methods and interpretation of data. J Neurophysiol. 1956 May;19(3):201–212. doi: 10.1152/jn.1956.19.3.201. [DOI] [PubMed] [Google Scholar]
  2. Abe T., Haga T., Kurokawa M. Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve. Biochem J. 1973 Nov;136(3):731–740. doi: 10.1042/bj1360731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ames A., 3rd, Nesbett F. B. Intracellular and extracellular compartments of mammalian central nervous tissue. J Physiol. 1966 May;184(1):215–238. doi: 10.1113/jphysiol.1966.sp007912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ames A., 3rd, Parks J. M. Functional homogeneity of leucine pool in retina cells. J Neurochem. 1976 Nov;27(5):1017–1025. doi: 10.1111/j.1471-4159.1976.tb00303.x. [DOI] [PubMed] [Google Scholar]
  5. Ames A., 3rd, Parks J. M., Nesbett F. B. Transport of leucine and sodium in central nervous tissue: studies on retina in vitro. J Neurochem. 1976 Nov;27(5):999–1015. doi: 10.1111/j.1471-4159.1976.tb00302.x. [DOI] [PubMed] [Google Scholar]
  6. Anderson R. E., Feldman L. S., Feldman G. L. Lipids of ocular tissues. II. The phospholipids of mature bovine and rabbit whole retina. Biochim Biophys Acta. 1970 Mar 10;202(2):367–373. [PubMed] [Google Scholar]
  7. Anderson R. E. Lipids of ocular tissues. IV. A comparison of the phospholipids from the retina of six mammalian species. Exp Eye Res. 1970 Oct;10(2):339–344. doi: 10.1016/s0014-4835(70)80046-x. [DOI] [PubMed] [Google Scholar]
  8. Anderson R. E., Maude M. B. Phospholipids of bovine outer segments. Biochemistry. 1970 Sep 1;9(18):3624–3628. doi: 10.1021/bi00820a019. [DOI] [PubMed] [Google Scholar]
  9. Anderson R. E., Risk M. Lipids of ocular tissues. IX. The phospholipids of frog photoreceptor membranes. Vision Res. 1974 Jan;14(1):129–131. doi: 10.1016/0042-6989(74)90127-8. [DOI] [PubMed] [Google Scholar]
  10. Ansell G. B., Spanner S. The metabolism of [Me-14C]choline in the brain of the rat in vivo. Biochem J. 1968 Nov;110(2):201–206. doi: 10.1042/bj1100201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Banks P., Mayor D., Mitchell M., Tomlinson D. Studies on the translocation of noradrenaline-containing vesicles in post-ganglionic sympathetic neurones in vitro. Inhibition of movement by colchicine and vinblastine and evidence for the involvement of axonal microtubules. J Physiol. 1971 Aug;216(3):625–639. doi: 10.1113/jphysiol.1971.sp009544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bibb C., Young R. W. Renewal of glycerol in the visual cells and pigment epithelium of the frog retina. J Cell Biol. 1974 Aug;62(2):378–389. doi: 10.1083/jcb.62.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bunt A. H. Fine structure and radioautography of rabbit photoreceptor cells. Invest Ophthalmol Vis Sci. 1978 Feb;17(2):90–104. [PubMed] [Google Scholar]
  14. Bunt A. H., Lund R. D., Lund J. S. Retrograde axonal transport of horseradish peroxidase by ganglion cells of the albino rat retina. Brain Res. 1974 Jun 20;73(2):215–228. doi: 10.1016/0006-8993(74)91045-2. [DOI] [PubMed] [Google Scholar]
  15. Bunt A. H., Minckler D. S. Displaced ganglion cells in the retina of the monkey. Invest Ophthalmol Vis Sci. 1977 Jan;16(1):95–98. [PubMed] [Google Scholar]
  16. CURTIS D. R., DAVIS R. The excitation of lateral geniculate neurones by quaternary ammonium derivatives. J Physiol. 1963 Jan;165:62–82. doi: 10.1113/jphysiol.1963.sp007042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Collier B., Lang C. The metabolism of choline by a sympathetic ganglion. Can J Physiol Pharmacol. 1969 Feb;47(2):119–126. doi: 10.1139/y69-022. [DOI] [PubMed] [Google Scholar]
  18. Dairman W., Geffen L., Marchelle M. Axoplasmic transport of aromatic L-amino acid decarboxylase (EC 4.1.1.26) and dopamine beta-hydroxylase (EC 1.14.2.1) in rat sciatic nerve. J Neurochem. 1973 Jun;20(6):1617–1623. doi: 10.1111/j.1471-4159.1973.tb00278.x. [DOI] [PubMed] [Google Scholar]
  19. Deffenu G., Bertaccini G., Pepeu G. Acetylcholine and 5-hydroxytryptamine levels of the lateral geniculate bodies and superior colliculus of cats after visual deafferentation. Exp Neurol. 1967 Feb;17(2):203–209. doi: 10.1016/0014-4886(67)90145-8. [DOI] [PubMed] [Google Scholar]
  20. Ehinger B., Falck B., Laties A. M. Adrenergic neurons in teleost retina. Z Zellforsch Mikrosk Anat. 1969 May 23;97(2):285–297. doi: 10.1007/BF00344763. [DOI] [PubMed] [Google Scholar]
  21. Ehinger B., Falck B. Morphological and pharmacohistochemical characteristics of adrenergic retinal neurons of some mammals. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1969;178(4):295–305. doi: 10.1007/BF00410475. [DOI] [PubMed] [Google Scholar]
  22. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  23. Flower R. J., Blackwell G. J. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol. 1976 Feb 1;25(3):285–291. doi: 10.1016/0006-2952(76)90216-1. [DOI] [PubMed] [Google Scholar]
  24. Freeman J. A. Possible regulatory function of acetylcholine receptor in maintenance of retinotectal synapses. Nature. 1977 Sep 15;269(5625):218–222. doi: 10.1038/269218a0. [DOI] [PubMed] [Google Scholar]
  25. Haley J. E., Tirri L. J., Ledeen R. W. Axonal transport of lipids in the rabbit optic system. J Neurochem. 1979 Mar;32(3):727–734. doi: 10.1111/j.1471-4159.1979.tb04555.x. [DOI] [PubMed] [Google Scholar]
  26. Hildebrand J. G., Barker D. L., Herbert E., Kravitz E. A. Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol. 1971;2(3):231–246. doi: 10.1002/neu.480020305. [DOI] [PubMed] [Google Scholar]
  27. Hughes A. Topographical relationships between the anatomy and physiology of the rabbit visual system. Doc Ophthalmol. 1971 Sep 12;30:33–159. doi: 10.1007/BF00142518. [DOI] [PubMed] [Google Scholar]
  28. Koike H., Eisenstadt M., Schwartz J. H. Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia. Brain Res. 1972 Feb 11;37(1):152–159. doi: 10.1016/0006-8993(72)90359-9. [DOI] [PubMed] [Google Scholar]
  29. Kuhar M. J., Murrin L. C. Sodium-dependent, high affinity choline uptake. J Neurochem. 1978 Jan;30(1):15–21. doi: 10.1111/j.1471-4159.1978.tb07029.x. [DOI] [PubMed] [Google Scholar]
  30. LaVail M. M. Kinetics of rod outer segment renewal in the developing mouse retina. J Cell Biol. 1973 Sep;58(3):650–661. doi: 10.1083/jcb.58.3.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lam D. M. Biosynthesis of acetylcholine in turtle photoreceptors. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1987–1991. doi: 10.1073/pnas.69.7.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lapetina E. G., Lunt G. G., De Robertis E. The turnover of phosphatidyl choline in rat cerebral cortex membranes in vivo. J Neurobiol. 1969;1(3):295–302. doi: 10.1002/neu.480010305. [DOI] [PubMed] [Google Scholar]
  33. Lunt G. G., Lapetina E. G. Incorporation of (Me-14C)choline into phosphatidyl choline of rat cerebral cortex membranes in vitro. Brain Res. 1970 Mar 17;18(3):451–459. doi: 10.1016/0006-8993(70)90128-9. [DOI] [PubMed] [Google Scholar]
  34. Marc R. E., Stell W. K., Bok D., Lam D. M. GABA-ergic pathways in the goldfish retina. J Comp Neurol. 1978 Nov 15;182(2):221–244. doi: 10.1002/cne.901820204. [DOI] [PubMed] [Google Scholar]
  35. Masland R. H., Ames A., 3rd Responses to acetylcholine of ganglion cells in an isolated mammalian retina. J Neurophysiol. 1976 Nov;39(6):1220–1235. doi: 10.1152/jn.1976.39.6.1220. [DOI] [PubMed] [Google Scholar]
  36. Masland R. H., Livingstone C. J. Effect of stimulation with light on synthesis and release of acetylcholine by an isolated mammalian retina. J Neurophysiol. 1976 Nov;39(6):1210–1219. doi: 10.1152/jn.1976.39.6.1210. [DOI] [PubMed] [Google Scholar]
  37. Mills J. W., Ernst S. A., DiBona D. R. Localization of Na+-pump sites in frog skin. J Cell Biol. 1977 Apr;73(1):88–110. doi: 10.1083/jcb.73.1.88. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Neal M. J., Gilroy J. High-affinity choline transport in the isolated retina. Brain Res. 1975 Aug 15;93(3):548–551. doi: 10.1016/0006-8993(75)90197-3. [DOI] [PubMed] [Google Scholar]
  39. Nichols C. W., Koelle G. B. Acetylcholinesterase: method for demonstration in amacrine cells of rabbit retina. Science. 1967 Jan 27;155(3761):477–478. doi: 10.1126/science.155.3761.477. [DOI] [PubMed] [Google Scholar]
  40. Nichols C. W., Koelle G. B. Comparison of the localization of acetylcholinesterase and non-specific cholinesterase activities in mammalian and avian retinas. J Comp Neurol. 1968 May;133(1):1–16. doi: 10.1002/cne.901330102. [DOI] [PubMed] [Google Scholar]
  41. Pepperberg D. R., Masland R. H. Retinal-induced sensitization of light-adapted rabbit photoreceptors. Brain Res. 1978 Jul 28;151(1):194–200. doi: 10.1016/0006-8993(78)90964-2. [DOI] [PubMed] [Google Scholar]
  42. Phillis J. W., Tebecis A. K., York D. H. A study of cholinoceptive cells in the lateral geniculate nucleus. J Physiol. 1967 Oct;192(3):695–713. doi: 10.1113/jphysiol.1967.sp008326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Potter L. T., Murphy W. Electrophoresis of acetylcholine, choline and related compounds. Biochem Pharmacol. 1967 Jul 7;16(7):1386–1388. doi: 10.1016/0006-2952(67)90174-8. [DOI] [PubMed] [Google Scholar]
  44. Potter L. T. Synthesis, storage and release of [14C]acetylcholine in isolated rat diaphragm muscles. J Physiol. 1970 Jan;206(1):145–166. doi: 10.1113/jphysiol.1970.sp009003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. RAVIOLA E., RAVIOLA G. [Histochemical research on the retina of the rabbit during its postnatal development]. Z Zellforsch Mikrosk Anat. 1962;56:552–572. [PubMed] [Google Scholar]
  46. Reale E., Luciano L., Spitznas M. The fine structural localization of acetylcholinesterase activity in the retina and optic nerve of rabbits. J Histochem Cytochem. 1971 Feb;19(2):85–96. doi: 10.1177/19.2.85. [DOI] [PubMed] [Google Scholar]
  47. Ross C. D., McDougal D. B., Jr The distribution of choline acetyltransferase activity in vertebrate retina. J Neurochem. 1976 Mar;26(3):521–526. doi: 10.1111/j.1471-4159.1976.tb01505.x. [DOI] [PubMed] [Google Scholar]
  48. Ross D., Cohen A. I., McDougal D. B., Jr Choline acetyltransferase and acetylcholine esterase activities in normal and biologically fractionated mouse retinas. Invest Ophthalmol. 1975 Oct;14(10):756–761. [PubMed] [Google Scholar]
  49. Sarthy P. V., Lam D. M. Endogenous levels of neurotransmitter candidates in photoreceptor cells of the turtle retina. J Neurochem. 1979 Feb;32(2):455–461. doi: 10.1111/j.1471-4159.1979.tb00371.x. [DOI] [PubMed] [Google Scholar]
  50. Schwartz I. R., Bok D. Electron microscopic localization of [125I]alpha-bungarotoxin binding sites in the outer plexiform layer of the goldfish retina. J Neurocytol. 1979 Feb;8(1):53–66. doi: 10.1007/BF01206458. [DOI] [PubMed] [Google Scholar]
  51. Stein O., Stein Y. Light and electron microscopic radioautography of lipids: techniques and biological applications. Adv Lipid Res. 1971;9:1–72. doi: 10.1016/b978-0-12-024909-1.50008-9. [DOI] [PubMed] [Google Scholar]
  52. Swartz J. G., Mitchell J. E. Biosynthesis of retinal phospholipids: incorporation of radioactivity from labeled phosphorylcholine and cytidine diphosphate choline. J Lipid Res. 1970 Nov;11(6):544–550. [PubMed] [Google Scholar]
  53. Tang B. Y., Komiya Y., Austin L. Axoplasmic flow of phospholipids and cholesterol in the sciatic nerve of normal and dystrophic mice. Exp Neurol. 1974 Apr;43(1):13–20. doi: 10.1016/0014-4886(74)90130-7. [DOI] [PubMed] [Google Scholar]
  54. Vogel Z., Maloney G. J., Ling A., Daniels M. P. Identification of synaptic acetylcholine receptor sites in retina with peroxidase-labeled alpha-bungarotoxin. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3268–3272. doi: 10.1073/pnas.74.8.3268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Widlund L., Heilbronn E. Uptake of acetylcholine and choline into rat brain cortical slices and synaptosomes as related to 32Pi incorporation into their phospholipids. J Neurochem. 1974 Jun;22(6):991–998. doi: 10.1111/j.1471-4159.1974.tb04327.x. [DOI] [PubMed] [Google Scholar]
  56. Woodward W. R., Lindström S. H. A potential screening technique for neurotransmitters in the CNS: model studies in the cat spinal cord. Brain Res. 1977 Nov 25;137(1):37–52. doi: 10.1016/0006-8993(77)91011-3. [DOI] [PubMed] [Google Scholar]
  57. Yamamura H. I., Snyder S. H. High affinity transport of choline into synaptosomes of rat brain. J Neurochem. 1973 Dec;21(6):1355–1374. doi: 10.1111/j.1471-4159.1973.tb06022.x. [DOI] [PubMed] [Google Scholar]
  58. Yavin E. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. Patterns of acetylcholine phosphocholine, and choline phosphoglycerides labeling from (methyl-14C)choline. J Biol Chem. 1976 Mar 10;251(5):1392–1397. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES